Giải bài tập

Giải bài 43, 44, 45 trang 12 SBT Toán 9 tập 1

Giải bài tập trang 12 bài 4 liên hệ giữa phép chia và phép khai phương Sách bài tập (SBT) Toán 9 tập 1. Câu 43: Tìm x thỏa mãn điều kiện…

Câu 43 trang 12 Sách Bài Tập (SBT) Toán 9 Tập 1

Tìm x thỏa mãn điều kiện

a) \(\sqrt {{{2x – 3} \over {x – 1}}}  = 2\)

b) \({{\sqrt {2x – 3} } \over {\sqrt {x – 1} }} = 2\)

c) \(\sqrt {{{4x + 3} \over {x + 1}}}  = 3\)

d) \({{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3.\)

Gợi ý làm bài

a) Ta có:

\(\sqrt {{{2x – 3} \over {x – 1}}} \)  xác định khi và chỉ khi  \({{2x – 3} \over {x – 1}} \ge 0\)

Trường hợp 1:  

\(\eqalign{
& \left\{ \matrix{
2x – 3 \ge 0 \hfill \cr 
x – 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \ge 3 \hfill \cr 
x > 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge 1,5 \hfill \cr 
x > 1 \hfill \cr} \right. \Leftrightarrow x \ge 1,5 \cr} \)

Trường hợp 2: 

\(\eqalign{
& \left\{ \matrix{
2x – 3 \le 0 \hfill \cr 
x – 1 2x \le 3 \hfill \cr 
x & \Leftrightarrow \left\{ \matrix{
x \le 1,5 \hfill \cr 
x

Với x ≥ 1,5 hoặc x

\(\eqalign{
& \sqrt {{{2x – 3} \over {x – 1}}} = 2 \Leftrightarrow {{2x – 3} \over {x – 1}} = 4 \cr 
& \Leftrightarrow 2x – 3 = 4(x – 1) \cr} \)

\(\eqalign{
& \Leftrightarrow 2x – 3 = 4x – 4 \cr 
& \Leftrightarrow 2x = 1 \Leftrightarrow x = 0,5 \cr} \)

Giá trị x = 0,5 thỏa mãn điều kiện x

b) Ta có: \({{\sqrt {2x – 3} } \over {\sqrt {x – 1} }}\) xác định khi và chỉ khi:

\(\eqalign{
& \left\{ \matrix{
2x – 3 \ge 0 \hfill \cr 
x – 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \ge 3 \hfill \cr 
x > 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge 1,5 \hfill \cr 
x > 1 \hfill \cr} \right. \Leftrightarrow x \ge 1,5 \cr} \)

Với x ≥ 1,5 ta có: 

\(\eqalign{
& {{\sqrt {2x – 3} } \over {\sqrt {x – 1} }} = 2 \Leftrightarrow {{2x – 3} \over {x – 1}} = 4 \cr 
& \Leftrightarrow 2x – 3 = 4(x – 1) \cr} \)

\(\eqalign{
& \Leftrightarrow 2x – 3 = 4x – 4 \cr 
& \Leftrightarrow 2x = 1 \Leftrightarrow x = 0,5 \cr} \)

Giá trị x = 0,5 không thỏa mãn điều kiện.

Vậy không có giá trị nào của x để  \({{\sqrt {2x – 3} } \over {\sqrt {x – 1} }} = 2\)

c) Ta có: \(\sqrt {{{4x + 3} \over {x + 1}}} \) xác định khi và chỉ khi \({{4x + 3} \over {x + 1}} \ge 0\)

Trường hợp 1:  

\(\eqalign{
& \left\{ \matrix{
4x + 3 \ge 0 \hfill \cr 
x + 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4x \ge – 3 \hfill \cr 
x > – 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge – 0,75 \hfill \cr 
x > – 1 \hfill \cr} \right. \Leftrightarrow x \ge – 0,75 \cr} \)

Trường hợp 2:  

\(\eqalign{
& \left\{ \matrix{
4x + 3 \le 0 \hfill \cr 
x + 1 4x \le – 3 \hfill \cr 
x & \Leftrightarrow \left\{ \matrix{
x \ge – 0,75 \hfill \cr 
x

Với x ≥ -0,75 hoặc x

\(\eqalign{
& \sqrt {{{4x + 3} \over {x + 1}}} = 3 \Leftrightarrow {{4x + 3} \over {x + 1}} = 9 \cr 
& \Leftrightarrow 4x + 3 = 9(x + 1) \cr} \)

\(\eqalign{
& \Leftrightarrow 4x + 3 = 9x + 9 \cr 
& \Leftrightarrow 5x = – 6 \Leftrightarrow x = – 1,2 \cr} \)

Giá trị x = -1,2 thỏa mãn điều kiện x

d) Ta có : \({{\sqrt {4x + 3} } \over {\sqrt {x + 1} }}\) xác định khi và chỉ khi:

\(\eqalign{
& \left\{ \matrix{
4x + 3 \ge 0 \hfill \cr 
x + 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4x \ge – 3 \hfill \cr 
x > – 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge – 0,75 \hfill \cr 
x > – 1 \hfill \cr} \right. \Leftrightarrow x \ge – 0,75 \cr} \)

Với x ≥ -0,75 ta có: 

\(\eqalign{
& {{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3 \Leftrightarrow {{4x + 3} \over {x + 1}} = 9 \cr 
& \Leftrightarrow 4x + 3 = 9(x + 1) \cr} \)

\(\eqalign{
& \Leftrightarrow 4x + 3 = 9x + 9 \cr 
& \Leftrightarrow 5x = – 6 \Leftrightarrow x = – 1,2 \cr} \)

Vậy không có giá trị nào của x để \({{\sqrt {4x + 3} } \over {\sqrt {x + 1} }} = 3.\)

 


Câu 44 trang 12 Sách Bài Tập (SBT) Toán 9 Tập 1

Cho hai số a, b không âm. Chứng minh:

\({{a + b} \over 2} \ge \sqrt {ab} \)

(Bất đẳng thức Cô-si cho hai số không âm)

Dấu đẳng thức xảy ra khi nào ?

Gợi ý làm bài

Vì a ≥ 0 nên \(\sqrt a \) xác định, b ≥ 0 nên \(\sqrt b \) xác định

Ta có: 

\(\eqalign{
& {\left( {\sqrt a – \sqrt b } \right)^2} \ge 0 \cr 
& \Leftrightarrow a – 2\sqrt {ab} + b \ge 0 \cr} \)

\( \Leftrightarrow a + b \ge 2\sqrt {ab}  \Leftrightarrow {{a + b} \over 2} \ge \sqrt {ab} \)

Dấu đẳng thức xảy ra khi a = b.

 


Câu 45 trang 12 Sách Bài Tập (SBT) Toán 9 Tập 1

Với a ≥ 0, b ≥ 0, chứng minh

\(\sqrt {{{a + b} \over 2}}  \ge {{\sqrt a  + \sqrt b } \over 2}\)

Gợi ý làm bài

Vì a ≥ 0 nên \(\sqrt a \) xác định, b ≥ 0 nên \(\sqrt b \) xác định

Ta có: 

\(\eqalign{
& {\left( {\sqrt a – \sqrt b } \right)^2} \ge 0 \cr 
& \Leftrightarrow a – 2\sqrt {ab} + b \ge 0 \ge a + b \ge 2\sqrt {ab} \cr} \)

\( \Leftrightarrow a + b + a + b \ge a + b + 2\sqrt {ab} \)

\( \Leftrightarrow 2(a + b) \ge {\left( {\sqrt a } \right)^2} + 2\sqrt {ab}  + {\left( {\sqrt b } \right)^2}\)

\(\eqalign{
& \Leftrightarrow 2(a + b) \ge {\left( {\sqrt a + \sqrt b } \right)^2} \cr 
& \Leftrightarrow {{a + b} \over 2} \ge {{{{\left( {\sqrt a + \sqrt b } \right)}^2}} \over 4} \cr} \)

\(\eqalign{
& \Leftrightarrow \sqrt {{{a + b} \over 2}} \ge \sqrt {{{{{\left( {\sqrt a + \sqrt b } \right)}^2}} \over 4}} \cr 
& \Leftrightarrow \sqrt {{{a + b} \over 2}} \ge {{\sqrt a + \sqrt b } \over 2} \cr} \)

Trường Cao đẳng nghề Thừa Thiên Huế

cdnthuathienhue.edu.vn

Trường Cao Đẳng nghề Thừa Thiên Huế được thành lập theo Quyết định số 209/QĐ-LĐTBXH ngày 22/02/2012 của Bộ trưởng Bộ Lao Động Thương Binh Xã Hội. Là một trong những trường đào tạo nghề trọng điểm của Tỉnh Thừa Thiên Huế và là một trong 36 trường dạy nghề được đầu tư tập trung bằng nguồn vốn dự án "Tăng cường năng lực đào tạo nghề" giai đoạn 2001-2005 của Bộ Lao động - Thương binh và Xã hội.

Có thể bạn cần

Back to top button