Giải bài tập

Giải bài 44, 45, 46, 47 trang 36 SBT Toán 8 tập 1

Giải bài tập trang 36 bài 9 biến đổi các biểu thức hữu tỉ Giá trị của phân thức Sách bài tập (SBT) Toán 8 tập 1. Câu 44: Biến đổi các biểu thức sau thành phân thức…

Câu 44 trang 36 Sách bài tập (SBT) Toán 8 tập 1

Biến đổi các biểu thức sau thành phân thức

a. \({1 \over 2} + {x \over {1 – {x \over {x + 2}}}}\)

b. \({{x – {1 \over {{x^2}}}} \over {x + {1 \over x} + {1 \over {{x^2}}}}}\)

c. \({{1 – {{2y} \over x} + {{{y^2}} \over {{x^2}}}} \over {{1 \over x} – {1 \over y}}}\)

d. \({{{x \over 4} – 1 + {3 \over {4x}}} \over {{x \over 2} – {6 \over x} + {1 \over 2}}}\)

Giải:

a. \({1 \over 2} + {x \over {1 – {x \over {x + 2}}}}\)\( = {1 \over 2} + {x \over {{{x + 2 – x} \over {x + 2}}}} = {1 \over 2} + {x \over {{2 \over {x + 2}}}}\)

 

b. \({{x – {1 \over {{x^2}}}} \over {x + {1 \over x} + {1 \over {{x^2}}}}}\) \( = \left( {x – {1 \over {{x^2}}}} \right):\left( {1 + {1 \over x} + {1 \over {{x^2}}}} \right) = {{{x^3} – 1} \over {{x^2}}}:{{{x^2} + x + 1} \over {{x^2}}}\)

\( = {{{x^3} – 1} \over {{x^2}}}.{{{x^2}} \over {{x^2} + x + 1}} = {{\left( {x – 1} \right)\left( {{x^2} + x + 1} \right){x^2}} \over {{x^2}\left( {{x^2} + x + 1} \right)}} = x – 1\)

c. \({{1 – {{2y} \over x} + {{{y^2}} \over {{x^2}}}} \over {{1 \over x} – {1 \over y}}}\)\( = \left( {1 – {{2y} \over x} + {{{y^2}} \over {{x^2}}}} \right):\left( {{1 \over x} – {1 \over y}} \right) = {{{x^2} – 2xy + {y^2}} \over {{x^2}}}:{{y – x} \over {xy}}\)

\( = {{{x^2} – 2xy + {y^2}} \over {{x^2}}}.{{xy} \over {y – x}} = {{{{\left( {y – x} \right)}^2}.xy} \over {{x^2}\left( {y – x} \right)}} = {{y\left( {y – x} \right)} \over x}\)

d. \({{{x \over 4} – 1 + {3 \over {4x}}} \over {{x \over 2} – {6 \over x} + {1 \over 2}}}\)\( = \left( {{x \over 4} – 1 + {3 \over {4x}}} \right):\left( {{x \over 2} – {6 \over x} + {1 \over 2}} \right) = {{{x^2} – 4x + 3} \over {4x}}:{{{x^2} – 12x + x} \over {2x}}\)

\(\eqalign{  &  = {{{x^2} – 4x + 3} \over {4x}}.{{2x} \over {{x^2} – 12 + x}} = {{{x^2} – x – 3x + 3} \over {4x}}.{{2x} \over {{x^2} – 3x + 4x – 12}}  \cr  &  = {{\left( {x – 1} \right)\left( {x – 3} \right)} \over {4x}}.{{2x} \over {\left( {x – 3} \right)\left( {x + 4} \right)}} = {{\left( {x – 1} \right)\left( {x – 3} \right).2x} \over {4x\left( {x – 3} \right)\left( {x + 4} \right)}} = {{x – 1} \over {2\left( {x + 4} \right)}} \cr} \)


Câu 45 trang 36 Sách bài tập (SBT) Toán 8 tập 1

Thực hiện các phép tính sau :

a. \(\left( {{{5x + y} \over {{x^2} – 5xy}} + {{5x – y} \over {{x^2} + 5xy}}} \right).{{{x^2} – 25{y^2}} \over {{x^2} + {y^2}}}\)

b. \({{4xy} \over {{y^2} – {x^2}}}:\left( {{1 \over {{x^2} + 2xy + {y^2}}} – {1 \over {{x^2} – {y^2}}}} \right)\)

c. \(\left[ {{1 \over {{{\left( {2x – y} \right)}^2}}} + {2 \over {4{x^2} – {y^2}}} + {1 \over {{{\left( {2x + y} \right)}^2}}}} \right].{{4{x^2} + 4xy + {y^2}} \over {16x}}\)

d. \(\left( {{2 \over {x + 2}} – {4 \over {{x^2} + 4x + 4}}} \right):\left( {{2 \over {{x^2} – 4}} + {1 \over {2 – x}}} \right)\)

Giải:

a. \(\left( {{{5x + y} \over {{x^2} – 5xy}} + {{5x – y} \over {{x^2} + 5xy}}} \right).{{{x^2} – 25{y^2}} \over {{x^2} + {y^2}}}\)

\(\eqalign{  &  = \left[ {{{5x + y} \over {x\left( {x – 5y} \right)}} + {{5x – y} \over {x\left( {x + 5y} \right)}}} \right].{{{x^2} – 25{y^2}} \over {{x^2} + {y^2}}}  \cr  &  = {{\left( {5x + y} \right)\left( {x + 5y} \right) + \left( {5x – y} \right)\left( {x – 5y} \right)} \over {x\left( {x – 5y} \right)\left( {x + 5y} \right)}}.{{\left( {x – 5y} \right)\left( {x + 5y} \right)} \over {{x^2} + {y^2}}}  \cr  &  = {{5{x^2} + 25xy + xy + 5{y^2} + 5{x^2} – 25xy – xy + 5{y^2}} \over {x\left( {{x^2} + {y^2}} \right)}}  \cr  &  = {{10{x^2} + 10{y^2}} \over {x\left( {{x^2} + {y^2}} \right)}} = {{10\left( {{x^2} + {y^2}} \right)} \over {x\left( {{x^2} + {y^2}} \right)}} = {{10} \over x} \cr} \)

b. \({{4xy} \over {{y^2} – {x^2}}}:\left( {{1 \over {{x^2} + 2xy + {y^2}}} – {1 \over {{x^2} – {y^2}}}} \right)\)

\(\eqalign{  &  = {{4xy} \over {{y^2} – {x^2}}}:\left[ {{1 \over {{{\left( {x + y} \right)}^2}}} – {1 \over {\left( {x + y} \right)\left( {x – y} \right)}}} \right]  \cr  &  = {{4xy} \over {{y^2} – {x^2}}}:{{x – y – \left( {x + y} \right)} \over {{{\left( {x + y} \right)}^2}\left( {x – y} \right)}} = {{4xy} \over {{y^2} – {x^2}}}:{{ – 2y} \over {{{\left( {x + y} \right)}^2}\left( {x – y} \right)}} = {{4xy} \over {{y^2} – {x^2}}}.{{{{\left( {x + y} \right)}^2}\left( {y – x} \right)} \over {2y}}  \cr  &  = {{4xy{{\left( {x + y} \right)}^2}\left( {y – x} \right)} \over {\left( {y + x} \right)\left( {y – x} \right).2y}} = 2x\left( {x + y} \right) \cr} \)

c. \(\left[ {{1 \over {{{\left( {2x – y} \right)}^2}}} + {2 \over {4{x^2} – {y^2}}} + {1 \over {{{\left( {2x + y} \right)}^2}}}} \right].{{4{x^2} + 4xy + {y^2}} \over {16x}}\)

\(\eqalign{  &  = \left[ {{1 \over {{{\left( {2x – y} \right)}^2}}} + {2 \over {\left( {2x + y} \right)\left( {2x – y} \right)}} + {1 \over {{{\left( {2x + y} \right)}^2}}}} \right].{{{{\left( {2x + y} \right)}^2}} \over {16x}}  \cr  &  = {{{{\left( {2x + y} \right)}^2} + 2\left( {2x + y} \right)\left( {2x – y} \right) + {{\left( {2x – y} \right)}^2}} \over {{{\left( {2x + y} \right)}^2}.{{\left( {2x – y} \right)}^2}}}.{{{{\left( {2x + y} \right)}^2}} \over {16x}}  \cr  &  = {{{{\left[ {\left( {2x + y} \right) + \left( {2x – y} \right)} \right]}^2}} \over {16x{{\left( {2x – y} \right)}^2}}} = {{{{\left( {4x} \right)}^2}} \over {16x{{\left( {2x – y} \right)}^2}}} = {{16{x^2}} \over {16x{{\left( {2x – y} \right)}^2}}} = {x \over {{{\left( {2x – y} \right)}^2}}} \cr} \)

d. \(\left( {{2 \over {x + 2}} – {4 \over {{x^2} + 4x + 4}}} \right):\left( {{2 \over {{x^2} – 4}} + {1 \over {2 – x}}} \right)\)

\(\eqalign{  &  = \left[ {{2 \over {x + 2}} – {4 \over {{{\left( {x + 2} \right)}^2}}}} \right]:\left[ {{2 \over {\left( {x + 2} \right)\left( {x – 2} \right)}} – {1 \over {x – 2}}} \right]  \cr  &  = {{2\left( {x + 2} \right) – 4} \over {{{\left( {x + 2} \right)}^2}}}:{{2 – \left( {x + 2} \right)} \over {\left( {x + 2} \right)\left( {x – 2} \right)}} = {{2x + 4 – 4} \over {{{\left( {x + 2} \right)}^2}}}:{{2 – x – 2} \over {\left( {x + 2} \right)\left( {x – 2} \right)}}  \cr  &  = {{2x} \over {{{\left( {x + 2} \right)}^2}}}.{{\left( {x + 2} \right)\left( {x – 2} \right)} \over { – x}} = {{2\left( {x – 2} \right)} \over { – \left( {x + 2} \right)}} = {{2\left( {2 – x} \right)} \over {x + 2}} \cr} \)


Câu 46 trang 36 Sách bài tập (SBT) Toán 8 tập 1

Tìm điều kiện của biến để giá trị của phân thức xác định :

a. \({{5{x^2} – 4x + 2} \over {20}}\)

b. \({8 \over {x + 2004}}\)

c. \({{4x} \over {3x – 7}}\)

d. \({{{x^2}} \over {x + z}}\)

Giải:

a. Phân thức : \({{5{x^2} – 4x + 2} \over {20}}\)xác định với mọi \(x \in R\)

b. Phân thức : \({8 \over {x + 2004}}\)xác định khi \(x + 2004 \ne 0 \Rightarrow x \ne  – 2004\)

c. Phân thức : \({{4x} \over {3x – 7}}\)xác định khi \(3x – 7 \ne 0 \Rightarrow x \ne {7 \over 3}\)

d. Phân thức : \({{{x^2}} \over {x + z}}\)xác định khi \(x + z \ne 0 \Rightarrow x \ne  – z\)


Câu 47 trang 36 Sách bài tập (SBT) Toán 8 tập 1

Phân tích mẫu thức của các phân thức sau thành nhân tử rồi tìm điều kiện của x để giá trị của phân thức xác định :

a. \({5 \over {2x – 3{x^2}}}\)

b. \({{2x} \over {8{x^3} + 12{x^2} + 6x + 1}}\)

c. \({{ – 5{x^2}} \over {16 – 24x + 9{x^2}}}\)

d. \({3 \over {{x^2} – 4{y^2}}}\)

Giải:

a.  \({5 \over {2x – 3{x^2}}}\)\( = {5 \over {x\left( {2 – 3x} \right)}}\) xác định khi \(x\left( {2 – 3x} \right) \ne 0\)

\(\left\{ {\matrix{{x \ne 0}  \cr{2 – 3x \ne 0}  \cr}  \Rightarrow \left\{ {\matrix{ {x \ne 0}  \cr {x \ne {2 \over 3}}  \cr} } \right.} \right.\)

Vậy phân thức \({5 \over {2x – 3{x^2}}}\) xác định với \(x \ne 0\)  và \(x \ne {2 \over 3}\)

b. \({{2x} \over {8{x^3} + 12{x^2} + 6x + 1}}\) \( = {{2x} \over {{{\left( {2x + 1} \right)}^3}}}\) xác định khi \({\left( {2x + 1} \right)^3} \ne 0 \Rightarrow 2x + 1 \ne 0 \Rightarrow x \ne  – {1 \over 2}\)

c.  \({{ – 5{x^2}} \over {16 – 24x + 9{x^2}}}\)\( = {{ – 5{x^2}} \over {{4^2} – 2.4.3x + {{\left( {3x} \right)}^2}}} = {{ – 5{x^2}} \over {{{\left( {4 – 3x} \right)}^2}}}\)

xác định khi \({\left( {4 – 3x} \right)^2} \ne 0 \Rightarrow 4 – 3x \ne 0 \Rightarrow x \ne {4 \over 3}\)

d. \({3 \over {{x^2} – 4{y^2}}}\)\( = {3 \over {\left( {x – 2y} \right)\left( {x + 2y} \right)}}\)  xác định khi \(\left( {x – 2y} \right)\left( {x + 2y} \right) \ne 0\)

\( \Rightarrow \left\{ {\matrix{{x – 2y \ne 0}  \cr{x + 2y \ne 0}  \cr}  \Rightarrow x \ne  \pm 2y} \right.\)

Trường Cao đẳng nghề Thừa Thiên Huế

cdnthuathienhue.edu.vn

Trường Cao Đẳng nghề Thừa Thiên Huế được thành lập theo Quyết định số 209/QĐ-LĐTBXH ngày 22/02/2012 của Bộ trưởng Bộ Lao Động Thương Binh Xã Hội. Là một trong những trường đào tạo nghề trọng điểm của Tỉnh Thừa Thiên Huế và là một trong 36 trường dạy nghề được đầu tư tập trung bằng nguồn vốn dự án "Tăng cường năng lực đào tạo nghề" giai đoạn 2001-2005 của Bộ Lao động - Thương binh và Xã hội.

Có thể bạn cần

Back to top button