Giải bài tập

Giải bài 19, 20, 3.1 trang 7, 8 SBT Toán 8 tập 1

Giải bài tập trang 7, 8 bài 3, 4, 5 những hằng đẳng thức đáng nhớ Sách bài tập (SBT) Toán 8 tập 1. Câu 19: Tìm giá trị lớn nhất của các đa thức…

Câu 19 trang 7 Sách bài tập (SBT) Toán 8 tập 1

Tìm giá trị nhỏ nhất  của các đa thức:

a. P\( = {x^2} – 2x + 5\)

b. Q\( = 2{x^2} – 6x\)

c. M\( = {x^2} + {y^2} – x + 6y + 10\)

Giải:                                   

a. P\(= {x^2} – 2x + 5)\\( = {x^2} – 2x + 1 + 4 = {\left( {x – 1} \right)^2} + 4\)

Ta có: 

\({\left( {x – 1} \right)^2} \ge 0 \Rightarrow {\left( {x – 1} \right)^2} + 4 \ge 4\)

\( \Rightarrow P = {x^2} – 2x + 5 = {\left( {x – 1} \right)^2} + 4 \ge 4\)

\( \Rightarrow P = 4\)  là giá trị bé nhất ⇒ \({\left( {x – 1} \right)^2} = 0 \Rightarrow x = 1\)

Vậy P=4 là giá trị bé nhất của đa thức khi  

b. Q\( = 2{x^2} – 6x\)\( = 2\left( {{x^2} – 3x} \right) = 2\left( {{x^2} – 2.{3 \over 2}x + {9 \over 4} – {9 \over 4}} \right)\)

 \( = 2\left[ {{{\left( {x – {2 \over 3}} \right)}^2} – {9 \over 4}} \right] = 2{\left( {x – {2 \over 3}} \right)^2} – {9 \over 2}\)

      Ta có: \({\left( {x – {2 \over 3}} \right)^2} \ge 0 \Rightarrow 2{\left( {x – {2 \over 3}} \right)^2} \ge 0 \Rightarrow 2{\left( {x – {2 \over 3}} \right)^2} – {9 \over 2} \ge  – {9 \over 2}\)

       \( \Rightarrow Q =  – {9 \over 2}\) là giá trị nhỏ nhất \( \Rightarrow {\left( {x – {2 \over 3}} \right)^2} = 0 \Rightarrow x = {2 \over 3}\)

       Vậy \(Q =  – {9 \over 2}\)  là giá trị bé nhất của đa thức \(x = {2 \over 3}\)

c.

\(\eqalign{  & M = {x^2} + {y^2} – x + 6y + 10 = \left( {{y^2} + 6y + 9} \right) + \left( {{x^2} – x + 1} \right)  \cr  &  = {\left( {y + 3} \right)^2} + \left( {{x^2} – 2.{1 \over 2}x + {1 \over 4} + {3 \over 4}} \right) = {\left( {y + 3} \right)^2} + {\left( {x – {1 \over 2}} \right)^2} + {3 \over 4} \cr} \)

Ta có:

\(\eqalign{  & {\left( {y + 3} \right)^2} \ge 0;{\left( {x – {1 \over 2}} \right)^2} \ge 0  \cr  &  \Rightarrow {\left( {y + 3} \right)^2} + {\left( {x – {1 \over 2}} \right)^2} \ge 0 \Rightarrow {\left( {y + 3} \right)^2} + {\left( {x – {1 \over 2}} \right)^2} + {3 \over 4} \ge {3 \over 4} \cr} \)

\( \Rightarrow M = {3 \over 4}\)  là giá trị nhỏ nhất khi \({\left( {y + 3} \right)^2} = 0\)

\( \Rightarrow y =  – 3\)  và \({\left( {x – {1 \over 2}} \right)^2} = 0 \Rightarrow x = {1 \over 2}\)

Vậy \(M = {3 \over 4}\) là giá trị bé nhất tại \(y =  – 3\) và \(x = {1 \over 2}\)


Câu 20 trang 7 Sách bài tập (SBT) Toán 8 tập 1

Tìm giá trị lớn nhất của các đa thức:

a. \(A = 4x – {x^2} + 3\)

b. \(B = x – {x^2}\)

c. \(N = 2x – 2{x^2} – 5\)

Giải:

a. \(A = 4x – {x^2} + 3 = 7 – {x^2} + 4x – 4 = 7 – \left( {{x^2} – 4x + 4} \right) = 7 – {\left( {x – 2} \right)^2}\)

Ta có: \({\left( {x – 2} \right)^2} \ge 0\)  

Suy ra: \(A = 7 – {\left( {x – 2} \right)^2} \le 7\)

Vậy giá trị của A lớn nhất là 7 tại \(x = 2\)

b. \(B = x – {x^2})\\( = {1 \over 4} – {x^2} + x – {1 \over 4} = {1 \over 4} – \left( {{x^2} – 2.x.{1 \over 2} + {1 \over 4}} \right) = {1 \over 4} – {\left( {x – {1 \over 2}} \right)^2}\)

Vì \({\left( {x – {1 \over 2}} \right)^2} \ge 0\) . Suy ra: \(B = {1 \over 4} – {\left( {x – {1 \over 2}} \right)^2} \le {1 \over 4}\)

Vậy giá trị lớn nhất của biểu thức B là \({1 \over 4}\) tại \(x = {1 \over 2}\)

c. \(N = 2x – 2{x^2} – 5\) \( =  – 2\left( {{x^2} – x + {5 \over 2}} \right) =  – 2\left( {{x^2} – 2.x.{1 \over 2} + {1 \over 4} + {9 \over 4}} \right)\)

   \( =  – 2\left[ {{{\left( {x – {1 \over 2}} \right)}^2} + {9 \over 4}} \right] =  – 2{\left( {x – {1 \over 2}} \right)^2} – {9 \over 2}\)

Vì\({\left( {x – {1 \over 2}} \right)^2} \ge 0\)  nên\( – 2{\left( {x – {1 \over 2}} \right)^2} \le 0\)

Suy ra: \(N =  – 2{\left( {x – {1 \over 2}} \right)^2} – {9 \over 2} \le  – {9 \over 2}\)

Vậy giá trị lớn nhất của biểu thức N là \( – {9 \over 2}\)  tại \(x = {1 \over 2}\)


 Câu 3.1 trang 8 Sách bài tập (SBT) Toán 8 tập 1

Cho \({x^2} + {y^2} = 26\)  và\(xy = 5\)  giá trị của\({\left( {x – y} \right)^2}\)  là:

A. 4

B. 16

C. 21

D. 36

Giải:

Chọn B. 16

Trường Cao đẳng nghề Thừa Thiên Huế

cdnthuathienhue.edu.vn

Trường Cao Đẳng nghề Thừa Thiên Huế được thành lập theo Quyết định số 209/QĐ-LĐTBXH ngày 22/02/2012 của Bộ trưởng Bộ Lao Động Thương Binh Xã Hội. Là một trong những trường đào tạo nghề trọng điểm của Tỉnh Thừa Thiên Huế và là một trong 36 trường dạy nghề được đầu tư tập trung bằng nguồn vốn dự án "Tăng cường năng lực đào tạo nghề" giai đoạn 2001-2005 của Bộ Lao động - Thương binh và Xã hội.

Có thể bạn cần

Back to top button