Giải bài tập

Giải bài 51, 52, 53, 54 trang 24, 25 SGK toán 8 tập 1

Giải bài tập trang 24, 25 bài 9 Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp sgk toán 8 tập 1. Câu 51: Phân tích các đa thức sau thành nhân tử:…

Bài 51 trang 24 sgk toán 8 tập 1

Phân tích các đa thức sau thành nhân tử:
a) \({x^3}-{\rm{ }}2{x^2} + {\rm{ }}x\);                           

b) \(2{x^2} + {\rm{ }}4x{\rm{ }} + {\rm{ }}2{\rm{ }}-{\rm{ }}2{y^2}\);

c) \(2xy{\rm{ }}-{\rm{ }}{x^2}-{\rm{ }}{y^2} + {\rm{ }}16\).

Bài giải:

a) \({x^3}-{\rm{ }}2{x^2} + {\rm{ }}x{\rm{ }} = {\rm{ }}x({x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}1){\rm{ }} = {\rm{ }}x{\left( {x{\rm{ }}-{\rm{ }}1} \right)^2}\)

b) \(2{x^2} + {\rm{ }}4x{\rm{ }} + {\rm{ }}2{\rm{ }}-{\rm{ }}2{y^2} = {\rm{ }}2[({x^2} + {\rm{ }}2x{\rm{ }} + {\rm{ }}1){\rm{ }}-{\rm{ }}{y^2}]\)

\(= {\rm{ }}2[{\left( {x{\rm{ }} + {\rm{ }}1} \right)^2}-{\rm{ }}{y^2}]\)

\( = {\rm{ }}2\left( {x{\rm{ }} + {\rm{ }}1{\rm{ }}-{\rm{ }}y} \right)\left( {x{\rm{ }} + {\rm{ }}1{\rm{ }} + {\rm{ }}y} \right)\)

c) \(2xy{\rm{ }}-{\rm{ }}{x^2}-{\rm{ }}{y^2} + {\rm{ }}16{\rm{ }} = {\rm{ }}16{\rm{ }}-{\rm{ }}({x^2}-{\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}){\rm{ }}\)

\(= {\rm{ }}{4^2}-{\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}y} \right)^2}\)

\(= (4 – x + y)(4 + x – y)\)

 


Bài 52 trang 24 sgk toán 8 tập 1

Chứng minh rằng \((5n + 2)^2– 4\) chia hết cho \(5\) với mọi số nguyên \(n\).

Bài giải:

Ta có : \({(5n + 2)^2} – 4 = {(5n + 2)^2} – {2^2}\)

                                     \(= (5n + 2 – 2)(5n + 2 + 2)\)

                                     \(= 5n(5n + 4)\)

Vì tích \(5n(5n + 4)\) có chứa \(5\) và \(n\in \mathbb Z\),

do đó \(5n(5n + 4)\) \(\vdots\) \(5\) \(∀n ∈\mathbb Z\).

 


Bài 53 trang 24 sgk toán 8 tập 1

Phân tích các đa thức sau thành nhân tử:

a) \(x^2– 3x + 2\);

(Gợi ý: Ta không áp dụng ngay các phương pháp đã học để phân tích nhưng nếu tách hạng tử \(-3x = – x – 2x\) thì ta có \(x^2– 3x + 2 = x^2– x – 2x + 2\) và từ đó dễ dàng phân tích tiếp.

Cũng có thể tách \(2 = – 4 + 6\), khi đó ta có \(x^2– 3x + 2 = x^2– 4 – 3x + 6\), từ đó dễ dàng phân tích tiếp)

b) \(x^2+ x – 6\);

c) \(x^2+ 5x + 6\).

Bài giải:

a) \(x^2– 3x + 2 =  x^2– x – 2x + 2 = x(x – 1) – 2(x – 1) \)

\(= (x – 1)(x – 2)\)

Hoặc

\(x^2– 3x + 2 = x^2– 3x – 4 + 6\)

\(= x^2- 4 – 3x + 6\)

\(= (x – 2)(x + 2) – 3(x -2)\)

\( = (x – 2)(x + 2 – 3) = (x – 2)(x – 1)\)

b) \(x^2+ x – 6\)

Tách \(x=3x-2x\) ta được:

\(x^2+ x – 6 = x^2+ 3x – 2x – 6\)

                       \(= x(x + 3) – 2(x + 3)\)

                        \(= (x + 3)(x – 2)\).

c) \(x^2+ 5x + 6\)

Tách \(5x=2x+3x\) ta được:

\(x^2+ 5x + 6 = x^2+ 2x + 3x + 6\)

                      \(= x(x + 2) + 3(x + 2)\)

                      \(= (x + 2)(x + 3)\)


Bài 54 trang 25 sgk toán 8 tập 1

Phân tích các đa thức sau thành nhân tử:

a) \({x^3} + {\rm{ }}2{x^2}y{\rm{ }} + {\rm{ }}x{y^2}-{\rm{ }}9x\);                    

b) \(2x{\rm{ }}-{\rm{ }}2y{\rm{ }}-{\rm{ }}{x^2} + {\rm{ }}2xy{\rm{ }}-{\rm{ }}{y^2}\);

c) \({x^4}-{\rm{ }}2{x^2}\).

Bài giải:

a) \({x^3} + {\rm{ }}2{x^2}y{\rm{ }} + {\rm{ }}x{y^2}-{\rm{ }}9x{\rm{ }} = {\rm{ }}x({x^2}{\rm{ }} + 2xy{\rm{ }} + {\rm{ }}{y^2}-{\rm{ }}9)\)

                                            \(= {\rm{ }}x[({x^2} + {\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2}){\rm{ }}-{\rm{ }}9]\)

                                            \(= {\rm{ }}x[{\left( {x{\rm{ }} + {\rm{ }}y} \right)^2}-{\rm{ }}{3^2}]\)

                                            \(= {\rm{ }}x\left( {x{\rm{ }} + {\rm{ }}y{\rm{ }}-{\rm{ }}3} \right)\left( {x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}3} \right)\)

b) \(2x{\rm{ }}-{\rm{ }}2y{\rm{ }}-{\rm{ }}{x^2} + {\rm{ }}2xy{\rm{ }}-{\rm{ }}{y^2} = {\rm{ }}\left( {2x{\rm{ }}-{\rm{ }}2y} \right){\rm{ }}-{\rm{ }}({x^2}-{\rm{ }}2xy{\rm{ }} + {\rm{ }}{y^2})\)

                                              \(= {\rm{ }}2\left( {x{\rm{ }}-{\rm{ }}y} \right){\rm{ }}-{\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}y} \right)^2}\)

                                              \( = {\rm{ }}\left( {x{\rm{ }}-{\rm{ }}y} \right)\left[ {2{\rm{ }}-{\rm{ }}\left( {x{\rm{ }}-{\rm{ }}y} \right)} \right]\)

                                              \(= (x – y)(2 – x + y)\)

c) \({x^4}-{\rm{ }}2{x^2} = {\rm{ }}{x^2}\left( {{x^2} – 2} \right){\rm{ = }}{{\rm{x}}^2}\left( {{x^2} – {{\left( {\sqrt 2 } \right)}^2}} \right)  \)

\(={x^2}\left( {x{\rm{ }} – {\rm{ }}\sqrt 2 } \right)\left( {x{\rm{ }} + {\rm{ }}\sqrt 2 } \right)\).

Trường Cao đẳng nghề Thừa Thiên Huế

cdnthuathienhue.edu.vn

Trường Cao Đẳng nghề Thừa Thiên Huế được thành lập theo Quyết định số 209/QĐ-LĐTBXH ngày 22/02/2012 của Bộ trưởng Bộ Lao Động Thương Binh Xã Hội. Là một trong những trường đào tạo nghề trọng điểm của Tỉnh Thừa Thiên Huế và là một trong 36 trường dạy nghề được đầu tư tập trung bằng nguồn vốn dự án "Tăng cường năng lực đào tạo nghề" giai đoạn 2001-2005 của Bộ Lao động - Thương binh và Xã hội.

Có thể bạn cần

Back to top button