Giải bài tập

Giải bài 7, 8, 9, 10 trang 80 SBT Toán 8 tập 1

Giải bài tập trang 80 bài 1 tứ giác Sách bài tập (SBT) Toán 8 tập 1. Câu 7: Cho tứ giác ABCD. Chứng minh rằng…

Câu 7 trang 80 Sách bài tập (SBT) Toán 8 tập 1

Cho tứ giác ABCD. Chứng minh rằng tổng hai góc ngoài tại các đỉnh A và C bằng tổng hai góc trong tạo các đỉnh B và D

Giải:

Gọi \(\widehat {{A_1},}\widehat {{C_1}}\) là góc trong của tứ giác tại đỉnh A và C. \({\widehat A_2},{\widehat C_2}\) là góc ngoài tại đỉnh A và C.

Ta có: \({\widehat A_1} + {\widehat A_2} = {180^0}\) (2 góc kề bù)

\(\Rightarrow {\widehat A_2} = {180^0} – {\widehat A_1}\)      

\({\widehat C_1} + {\widehat C_2} = {180^0}\)         (2 góc kề bù)

\( \Rightarrow {\widehat C_2} = {180^0} – {\widehat C_1}\)    

Suy ra:

\(\eqalign{
& {\widehat A_2} + {\widehat C_2} = {180^0} – {\widehat A_1} + {180^0} – {\widehat C_1} \cr 
& = {360^0} – \left( {{{\widehat A}_1} + {{\widehat C}_1}} \right) \cr}\)        (1)

Trong tứ giác ABCD ta có:

\({\widehat A_1} + \widehat B + {\widehat C_1} + \widehat D = {360^0}\) (tổng các góc của tứ giác)

\(\Rightarrow \widehat B + \widehat D = {360^0} – \left( {{{\widehat A}_1} + {{\widehat C}_1}} \right)\)   (2)

Từ (1) và (2) suy ra: \({\widehat A_2} + {\widehat C_2} = \widehat B + \widehat D\)

 


Câu 8 trang 80 Sách bài tập (SBT) Toán 8 tập 1

Tứ giác ABCD có \(\widehat A = {110^0},\widehat B = {100^0}\). Các tia phân giác của các góc C và D cắt nhau ở E. Các đường phân giác của các góc ngoài tại các đỉnh C và D cắt nhau ở F. Tính \(\widehat {CED},\widehat {CFD}\)

Giải:

 – Trong tứ giác ABCD, ta có:

\(\eqalign{
& \widehat A + \widehat B + \widehat C + \widehat D = {360^0} \cr 
& \Rightarrow \widehat C + \widehat D = {360^0} – \left( {\widehat A + \widehat B} \right) \cr 
& = {360^0} – \left( {{{110}^0} + {{100}^0}} \right) = {150^0} \cr 
& {\widehat D_1} + {\widehat C_1} = {{\widehat C + \widehat D} \over 2} = {{{{150}^0}} \over 2} = {75^0} \cr} \) 

– Trong ∆CED, ta có:

\(\widehat {CED} = {180^0} – \left( {{{\widehat C}_1} + {{\widehat D}_1}} \right) = {180^0} – {75^0} = {105^0}\) 

DE ⊥ DF (tính chất tia phân giác của hai góc kề bù)

\(\Rightarrow \widehat {EDF} = {90^0}\)

CE ⊥ CF (tính chất tia phân giác của hai góc kề bù)

\( \Rightarrow \widehat {ECF} = {90^0}\)

Trong tứ giác CEDF, ta có:

\(\eqalign{
& \widehat {DEC} + \widehat {EDF} + \widehat {DFC} + \widehat {ECF} = {360^0} \cr 
& \Rightarrow \widehat {DFC} = {360^0} – \left( {\widehat {DEC} + \widehat {EDF} + \widehat {ECF}} \right) \cr 
& \widehat {DFC} = {360^0} – \left( {{{105}^0} + {{90}^0} + {{90}^0}} \right) = {75^0} \cr} \)

 


Câu 9 trang 80 Sách bài tập (SBT) Toán 8 tập 1

Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn tổng hai cạnh đối.

Giải:

Gọi O là giao điểm của hai đường chéo AC và BD.

Trong  ∆OAB, ta có:                                                                  

OA + OB > AB (bất đẳng thức tam giác) (1)  

Trong ∆OCD, ta có:

OC + OD > CD (bất đẳng thức tam giác) (2)

Cộng từng vế (1) và (2):

OA + OB + OC + OD > AB + CD

⇒ AC + BD > AB + CD

 


Câu 10 trang 80 Sách bài tập (SBT) Toán 8 tập 1

Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy.

Giải:

Đặt độ dài AB = a, BC = b, CD = c, AD = d

Gọi O là giao điểm hai đường chéo AC và BD

Trong ∆OAB, ta có:

OA + OA > a (bất đẳng thức tam giác)          (1)

Trong ∆OCD ta có:

Từ (1) và (2) suy ra:

OA + OB + OC + OD > a + c

Hay AC + BD > a + c  (*)

-Trong ∆OAD ta có: OA + OD > d (bất đẳng thức tam giác) (3)

-Trong ∆OBC ta có: OB + OC > b (bất đẳng thức tam giác) (4)

Từ (3) và (4) suy ra: OA + OD + OB + OC > b + d

⇒ AC + BD > b + d (**)

Từ (*) và (**) suy ra: 2(AC + BD) > a + b + c + d

\(⇒ AC + BD > {{a + b + c + d} \over 2}\)

-Trong ∆ABC ta có: AC

-Trong ∆ADC ta có: AC

Suy ra: 2AC

\(AC

-Trong ∆ABD ta có: BD

-Trong ∆BCD ta có: BD

Suy ra: 2BD

\(BD

Từ (5) và (6) suy ra: AC + BD

Trường Cao đẳng nghề Thừa Thiên Huế

cdnthuathienhue.edu.vn

Trường Cao Đẳng nghề Thừa Thiên Huế được thành lập theo Quyết định số 209/QĐ-LĐTBXH ngày 22/02/2012 của Bộ trưởng Bộ Lao Động Thương Binh Xã Hội. Là một trong những trường đào tạo nghề trọng điểm của Tỉnh Thừa Thiên Huế và là một trong 36 trường dạy nghề được đầu tư tập trung bằng nguồn vốn dự án "Tăng cường năng lực đào tạo nghề" giai đoạn 2001-2005 của Bộ Lao động - Thương binh và Xã hội.

Có thể bạn cần

Back to top button