Giải bài tập

Giải bài 73, 74, 75, 76 trang 89 SBT Toán 8 tập 1

Giải bài tập trang 89 bài 7 hình bình hành Sách bài tập (SBT) Toán 8 tập 1. Câu 73: Các tứ giác ABCD, EFGH vẽ trên giấy kẻ ô vuông ở hình 7 có là hình bình hành không…

Câu 73 trang 89 Sách bài tập (SBT) Toán 8 tập 1

Các tứ giác ABCD, EFGH vẽ trên giấy kẻ ô vuông ở hình 7 có là hình bình hành không ?

 Giải:                                                                                 

Tứ giác ABCD là hình bình hành vì có cạnh đối AD // BC và AD = BC bằng 3 cạnh ô vuông.

Tứ giác EFGH là hình bình hành vì có các cạnh đối bằng nhau.

EH = FG là đường chéo hình chữ nhật có cạnh 1 ô vuông và cạnh 3 ô vuông

EF = HG là đường chéo hình chữ nhật có cạnh 1 ô vuông và cạnh 3 ô vuông.

 


Câu 74 trang 89 Sách bài tập (SBT) Toán 8 tập 1

Cho hình bình hành ABCD. Gọi E là trung điểm của AB, F là trung điểm của CD. Chứng minh rằng DE = BF.

Giải:                                                                      

Ta có: AB = CD ( tính chất hình bình hành)

 \(\eqalign{  & EB = {1 \over 2}AB(gt)  \cr  & FD = {1 \over 2}CD(gt) \cr} \)

Suy ra: EB = FB  (1)

Mà AB // CD (gt)

⇒ BE // FD   (2)

Từ (1) và (2) suy ra tứ giác BEDF là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ DE = BF (tính chất hình bình hành)


Câu 75 trang 89 Sách bài tập (SBT) Toán 8 tập 1

Cho hình bình hành ABCD. Tia phân giác của góc A cắt CD ở M. Tia phân giác của góc C cắt AB ở N. Chứng minh rằng AMCN là hình bình hành.

Giải:                                                                            

Ta có:  \(\widehat A = \widehat C\)  (tính chất hình bình hành)

\(\eqalign{  & {\widehat A_2} = {1 \over 2}\widehat A(gt)  \cr  & {\widehat C_2} = {1 \over 2}\widehat C(gt) \cr} \)

Suy ra:  

              AB // CD (gt)

hay AN // CM (1)

Mà  \({\widehat N_1} = {\widehat C_2}\) (so le trong)

Suy ra: \({\widehat A_2} = {\widehat N_1}\)

⇒ AM // CN ( vì có các cặp góc ở vị trí đồng vị bằng nhau) (2)

Từ (1) và (2) suy ra: Tứ giác AMCN là hình bình hành ( theo định nghĩa)

 


Câu 76 trang 89 Sách bài tập (SBT) Toán 8 tập 1

Trên hình 8, cho ABCD là hình bình hành. Chứng minh rằng AECF là hình bình hành.

Giải:                                                                

Gọi O là giao điểm của AC và BD

OA = OC ( tính chất hình bình hành) (1)

Xét hai tam giác vuông AEO và CFO, ta có:

\(\widehat {AEO} = \widehat {CFO} = {90^0}\)

OA = OC ( chứng minh trên)

\(\widehat {AOE} = \widehat {COF}\) (đối đỉnh)

Do đó ∆ AEO =∆ CFO ( cạnh huyền, góc nhọn)

⇒ OE = OF (2)

Từ (1) và (2) suy ra tứ giác AECF là hình bình hành ( vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

Trường Cao đẳng nghề Thừa Thiên Huế

cdnthuathienhue.edu.vn

Trường Cao Đẳng nghề Thừa Thiên Huế được thành lập theo Quyết định số 209/QĐ-LĐTBXH ngày 22/02/2012 của Bộ trưởng Bộ Lao Động Thương Binh Xã Hội. Là một trong những trường đào tạo nghề trọng điểm của Tỉnh Thừa Thiên Huế và là một trong 36 trường dạy nghề được đầu tư tập trung bằng nguồn vốn dự án "Tăng cường năng lực đào tạo nghề" giai đoạn 2001-2005 của Bộ Lao động - Thương binh và Xã hội.

Có thể bạn cần

Back to top button