Giải bài tập

Giải bài 36, 37, 38 trang 10, 11 SBT Toán 9 tập 1

Giải bài tập trang 10, 11 bài 4 liên hệ giữa phép chia và phép khai phương Sách bài tập (SBT) Toán 9 tập 1. Câu 36: Áp dụng quy tắc khai phương một thương , hãy tính…

Câu 36 trang 10 Sách Bài Tập (SBT) Toán 9 Tập 1

Áp dụng quy tắc khai phương một thương , hãy tính:

a) \(\sqrt {{9 \over {169}}} \);

b) \(\sqrt {{{25} \over {144}}} \);

c) \(\sqrt {1{9 \over {16}}} \);

d) \(\sqrt {2{7 \over {81}}} \).

Gợi ý làm bài

a) \(\sqrt {{9 \over {169}}}  = {{\sqrt 9 } \over {\sqrt {169} }} = {3 \over {13}}\)

b) \(\sqrt {{{25} \over {144}}}  = {{\sqrt {25} } \over {\sqrt {144} }} = {5 \over {12}}\)

c) \(\sqrt {1{9 \over {16}}}  = \sqrt {{{25} \over {16}}}  = {{\sqrt {25} } \over {\sqrt {16} }} = {5 \over 4}\)

d) \(\sqrt {2{7 \over {81}}}  = \sqrt {{{169} \over {81}}}  = {{\sqrt {169} } \over {\sqrt {81} }} = {{13} \over 9}\)

 


Câu 37 trang 11 Sách Bài Tập (SBT) Toán 9 Tập 1

Áp dụng quy tắc chia hai căn bậc hai, hãy tính:

a) \({{\sqrt {2300} } \over {\sqrt {23} }}\)

b) \({{\sqrt {12,5} } \over {\sqrt {0,5} }}\)

c) \({{\sqrt {192} } \over {\sqrt {12} }}\)

d) \({{\sqrt 6 } \over {\sqrt {150} }}\)

Gợi ý làm bài

a) \({{\sqrt {2300} } \over {\sqrt {23} }} = \sqrt {{{2300} \over {23}}}  = \sqrt {100}  = 10\)

b) \({{\sqrt {12,5} } \over {\sqrt {0,5} }} = \sqrt {{{12,5} \over {0,5}}}  = \sqrt {25}  = 5\)

c) \({{\sqrt {192} } \over {\sqrt {12} }} = \sqrt {{{192} \over {12}}}  = \sqrt {16}  = 4\)

d) \({{\sqrt 6 } \over {\sqrt {150} }} = \sqrt {{6 \over {150}}}  = \sqrt {{1 \over {50}}}  = {1 \over 5}\)

 


Câu 38 trang 11 Sách Bài Tập (SBT) Toán 9 Tập 1

Cho các biểu thức:

A= \(\sqrt {{{2x + 3} \over {x – 3}}} \) và B = \({{\sqrt {2x + 3} } \over {\sqrt {x – 3} }}\)

a) Tìm x để A có nghĩa. Tìm x để B có nghĩa .

b) Với giá trị nào của x thì A=B ?

Gợi ý làm bài

a) Ta có: \(\sqrt {{{2x + 3} \over {x – 3}}} \) có nghĩa khi và chỉ khi \({{2x + 3} \over {x – 3}} \ge 0\)

Trường hợp 1: 

\(\eqalign{
& \left\{ \matrix{
2x + 3 \ge 0 \hfill \cr 
x – 3 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \ge 3 \hfill \cr 
x \ge 3 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge – {3 \over 2} \hfill \cr 
x \ge 3 \hfill \cr} \right. \Leftrightarrow x \ge 3 \cr} \)

Trường hợp 2: 

\(\eqalign{
& \left\{ \matrix{
2x + 3 \le 0 \hfill \cr 
x – 3 2x x & \Leftrightarrow \left\{ \matrix{
x \le – {3 \over 2} \hfill \cr 
x

Vậy với x > 3 hoặc x \( \le \) \( – {3 \over 2}\) thì biểu thức A có nghĩa.

Ta có: \({{\sqrt {2x + 3} } \over {\sqrt {x – 3} }}\)  có nghĩa khi và chỉ khi: 

\(\eqalign{
& \left\{ \matrix{
2x – 3 \ge 0 \hfill \cr 
x – 3 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2x \ge – 3 \hfill \cr 
x > 3 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x \ge – {3 \over 2} \hfill \cr 
x > 3 \hfill \cr} \right. \Leftrightarrow x > 3 \cr} \)

Vậy x > 3 thì biểu thức B có nghĩa.

b) Với x > 3 thì A và B đồng thời có nghĩa.

Vậy với x > 3 thì A = B.

Trường Cao đẳng nghề Thừa Thiên Huế

cdnthuathienhue.edu.vn

Trường Cao Đẳng nghề Thừa Thiên Huế được thành lập theo Quyết định số 209/QĐ-LĐTBXH ngày 22/02/2012 của Bộ trưởng Bộ Lao Động Thương Binh Xã Hội. Là một trong những trường đào tạo nghề trọng điểm của Tỉnh Thừa Thiên Huế và là một trong 36 trường dạy nghề được đầu tư tập trung bằng nguồn vốn dự án "Tăng cường năng lực đào tạo nghề" giai đoạn 2001-2005 của Bộ Lao động - Thương binh và Xã hội.

Có thể bạn cần

Back to top button