Giải bài tập

Giải bài 4.33, 4.34, 4.35, 4.36, 4.37, 4.38, 4.39 trang 87 SGK Toán 7 tập 1 – KNTT

Giải SGK Toán 7 trang 87 tập 1 Kết nối tri thức – Bài tập cuối chương 4: Tam giác bằng nhau. Cho M, N là hai điểm phân biệt nằm trên đường trung trực của đoạn thẳng AB sao cho AM = AN. Theo em, tứ giác AMBN là hình gì?

Bài 4.33 trang 87 sách giáo khoa Toán 7 Kết nối tri thức tập 1

Tính các số đo x, y trong tam giác dưới đây (H.4.75)

Lời giải: 

Áp dụng định lí tổng ba góc trong tam giác,

+) Ta có:

\(\begin{array}{l}x + x + {20^o} + x + {10^o} = {180^o}\\ \Rightarrow 3x = {150^o}\\ \Rightarrow x = {50^o}\end{array}\)

+) Ta có:

\(\begin{array}{l}y + {60^o} + 2y = {180^o}\\ \Rightarrow 3y = {120^o}\\ \Rightarrow y = {40^o}\end{array}\)

Bài 4.34 trang 87 sách giáo khoa Toán 7 Kết nối tri thức tập 1

Trong Hình 4.76, có AM = BM, AN = BN. Chứng minh rằng\(\widehat {MAN} = \widehat {MBN}\).

Lời giải: 

Xét 2 tam giác MNA và MNB có:

AM=BM

AN=BN

MN chung

→ \(\Delta MNA = \Delta MNB\) (c.c.c)

→ \(\widehat {MAN} = \widehat {MBN}\) (2 góc tương ứng)

Bài 4.35 trang 87 sách giáo khoa Toán 7 Kết nối tri thức tập 1

Trong Hình 4.77, có AO = BO,\(\widehat {OAM} = \widehat {OBN}\). Chứng minh rằng AM = BN.

Lời giải: 

Xét 2 tam giác OAM và OBN có:

\(\widehat {OAM} = \widehat {OBN}\)

AO=BO

Góc O chung

→ \(\Delta OAM = \Delta OBN\)(g.c.g)

→ AM=BN (2 cạnh tương ứng)

Bài 4.36 trang 87 sách giáo khoa Toán 7 Kết nối tri thức tập 1

Trong Hình 4.78, ta có AN = BM,\(\widehat {BAN} = \widehat {ABM}\). Chứng minh rằng\(\widehat {BAM} = \widehat {ABN}\).

Lời giải: 

Xét 2 tam giác ANB và BMA có:

AN=BM

\(\widehat {BAN} = \widehat {ABM}\)

AB chung

→ \(\Delta ANB = \Delta BMA\)(c.g.c)

Bài 4.37 trang 87 sách giáo khoa Toán 7 Kết nối tri thức tập 1

Cho M, N là hai điểm phân biệt nằm trên đường trung trực của đoạn thẳng AB sao cho AM = AN. Theo em, tứ giác AMBN là hình gì?

Lời giải: 

Vì M, N nằm trên đường trung trực của AB nên MA = MB ; NA = NB ( tính chất)

Mà MA = NA (gt)

Vậy MA = NA = MB = NB nên tứ giác AMBN là hình thoi

Bài 4.38 trang 87 sách giáo khoa Toán 7 Kết nối tri thức tập 1

Cho tam giác ABC cân tại A có \(\widehat {A{\rm{ }}} = 120^\circ \). Trên cạnh BC lấy hai điểm M, N sao cho MA, NA lần lượt vuông góc với AB, AC. Chứng minh rằng:

a) \(\Delta \)BAM = \(\Delta \)CAN;

b) Các tam giác ANB, AMC lần lượt cân tại N, M.

Lời giải: 

a) Xét 2 tam giác vuông BAM và CAN có:

AB=AC(Do tam giác ABC cân tại A)

\(\widehat B = \widehat C\) (Do tam giác ABC cân tại A)

→ \(\Delta BAM = \Delta CAN\)(g.c.g)

b)

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} – {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\begin{array}{l}\widehat B + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\\ \Rightarrow \widehat {AMC} = {180^o} – \widehat {AMB} = {180^o} – {60^o} = {120^o}\end{array}\)

Xét tam giác MAC có:

\(\begin{array}{l}\widehat {AMC} + \widehat {MAC} + \widehat C = {180^o}\\ \Rightarrow {120^o} + \widehat {MAC} + {30^o} = {180^o}\\ \Rightarrow \widehat {MAC} = {30^o} = \widehat C\end{array}\)

\(\Rightarrow \) Tam giác AMC cân tại M.

Vì \(\Delta BAM = \Delta CAN\) → BM=CN → BN=MC

Xét 2 tam giác ANB và AMC có:

AB=AC

\(AN = AM\)(do \(\Delta BAM = \Delta CAN\))

BN=MC

→ \(\Delta ANB = \Delta AMC\)(c.c.c)

Mà tam giác AMC cân tại M.

→ Tam giác ANB cân tại N.

Bài 4.39 trang 87 sách giáo khoa Toán 7 Kết nối tri thức tập 1

Cho tam giác ABC vuông tại A có B = 60°. Trên cạnh BC lấy điểm M sao cho \(\widehat {CAM} = {30^o}\). Chứng minh rằng:

a) Tam giác CAM cân tại M;

b) Tam giác BAM là tam giác đều;

c) M là trung điểm của đoạn thẳng BC.

Lời giải: 

a)      Xét tam giác ABC có:

\(\begin{array}{l}\widehat A + \widehat B + \widehat C = {180^o}\\ =  > {90^o} + {60^o} + \widehat C = {180^o}\\ =  > \widehat C = {30^o}\end{array}\)

Xét tam giác CAM có \(\widehat A = \widehat C = {30^o}\)

→ Tam giác CAM cân tại M.

b) Xét tam giác ABM có:

\(\begin{array}{l}\widehat C + \widehat {CMA} + \widehat {CAM} = {180^o}\\ =  > {30^o} + \widehat {CMA} + {30^o} = {180^o}\\ =  > \widehat {CMA} = {120^o}\\ =  > \widehat {BMA} = {180^o} – \widehat {CMA} = {180^o} – {120^o} = {60^o}\end{array}\)

Xét tam giác ABM có:

\(\begin{array}{l}\widehat B + \widehat {BMA} + \widehat {BAM} = {180^o}\\ =  > {60^o} + {60^o} + \widehat {BAM} = {180^o}\\ =  > \widehat {BAM} = {60^o}\end{array}\)

Do \(\widehat {BAM} = \widehat {BMA} = \widehat {ABM} = {60^o}\) nên tam giác ABM đều.

Trường Cao đẳng nghề Thừa Thiên Huế  

cdnthuathienhue.edu.vn

Trường Cao Đẳng nghề Thừa Thiên Huế được thành lập theo Quyết định số 209/QĐ-LĐTBXH ngày 22/02/2012 của Bộ trưởng Bộ Lao Động Thương Binh Xã Hội. Là một trong những trường đào tạo nghề trọng điểm của Tỉnh Thừa Thiên Huế và là một trong 36 trường dạy nghề được đầu tư tập trung bằng nguồn vốn dự án "Tăng cường năng lực đào tạo nghề" giai đoạn 2001-2005 của Bộ Lao động - Thương binh và Xã hội.

Có thể bạn cần

Back to top button