Giải bài tập

Giải bài 44, 4.1, 4.2, 4.3 trang 85 SBT Toán 8 tập 1

Giải bài tập trang 85 bài 4 đường trung bình của tam giác, của hình thang Sách bài tập (SBT) Toán 8 tập 1. Câu 44: Cho tam giác ABC, đường trung tuyến AM. Gọi O là trung điểm của AM…

 Câu 44 trang 85 Sách bài tập (SBT) Toán 8 tập 1

Cho tam giác ABC, đường trung tuyến AM. Gọi O là trung điểm của AM. Qua O kẻ đường thẳng d cắt các cạnh AB và AC. Gọi AA’, BB’, CC’ là các đường vuông góc kẻ từ A, B, C đến đường thẳng d. Chứng minh rằng:

\({\rm{AA’ = }}{{BB’ + CC’} \over 2}\)

Giải:

Ta có: BB’ ⊥ d (gt)

            CC’ ⊥ d (gt)

Suy ra: BB’ // CC’

Tứ giác BB’CC’ là hình thang

Kẻ MM’ ⊥ d

 ⇒ MM’ // BB’ // CC’

Nên MM’ là đường trung bình của hình thang BB’CC’

\( \Rightarrow MM’ = {{BB’ + CC’} \over 2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)

Xét hai tam giác vuông AA’O và MM’O:

\(\widehat {OA’A} = \widehat {OM’M}\)

AO = MO (gt)

\(\widehat {AOA’} = \widehat {MOM’}\) (đối đỉnh)

Do đó: ∆ AA’O = ∆ MM’O (cạnh huyền, góc nhọn)

⇒ AA’ = MM’ (2)

Từ (1) và (2) suy ra: \({\rm{AA’ = }}{{BB’ + CC’} \over 2}\).

 


Câu 4.1 trang 85 Sách bài tập (SBT) Toán lớp 8 tập 1

Trên hình bs.1, ta có AB // CD // EF // GH và AC = CE = EG. Biết CD = 9, GH = 13. Các độ dài AB và EF bằng:

A. 8 và 10                                                B.6 và 12

C. 7 và 11                                                D. 7 và 12

Giải:

Chọn C. 7 và 11.

 


Câu 4.2 trang 85 Sách bài tập (SBT) Toán lớp 8 tập 1

Cho đường thẳng d và hai điểm A, B có khoảng cách đến đường thẳng d theo thứ tự là 20cm và 6cm. Gọi C là trung điểm của AB. Tính khoảng cách từ C đến đường thẳng d.

Giải:

a) Trường hợp A và B nằm trên một nửa mặt phẳng bờ chứa đường thẳng d.

Gọi A’, B’ là chân đường vuông góc kẻ từ A và B đến d

AA’ ⊥ d; BB’ ⊥ d ⇒ AA’ // BB’

Tứ giác ABB’A’ là hình thang. Kẻ CH ⊥ d

⇒ CH // AA’ // BB’ nên CG là đường trung bình của hình thang ABB’A’

\( \Rightarrow CH = {{AA’ + BB’} \over 2} = {{20 + 6} \over 2} = 13\,\,\left( {cm} \right)\)

b) Trường hợp A và B nằm trên hai nửa mặt phẳng đối bờ chứa đường thẳng d

Kẻ CH ⊥ d cắt A’B tại K

⇒ CH // AA’ // BB’

Trong ∆ AA’B ta có: AC = CB

Mà CK // AA’ nên A’K = KB và CK là đường trung bình của tam giác AA’B

\( \Rightarrow CK = {{AA’} \over 2}\)  (tính chất đường trung bình của tam giác)

\(CK = {{20} \over 2} = 10\,\,\left( {cm} \right)\)

Trong ∆ A’BB’ có A’K = KB và KH // BB’

Nên KH là đường trung bình của ∆ A’BB’

\( \Rightarrow KH = {{BB’} \over 2}\) (tính chất đường trung bình của tam giác)

\( \Rightarrow KH = {6 \over 2} = 3\,\,\left( {cm} \right)\)

CH = CK – KH = 10 – 3 = 7(cm)

 


Câu 4.3 trang 85 Sách bài tập (SBT) Toán lớp 8 tập 1

Cho tam giác ABC. Gọi M là trung điểm của BC. Trên tia đối của tia BA lấy điểm D sao cho BD = AB. Gọi K là giao điểm của DM và AC. Chứng minh rằng AK = 2KC.

Giải:

Gọi H là trung điểm của AK

Trong ∆ ADK ta có BH là đường trung bình của ∆ ADK.

⇒ BH // DK (tính chất đường trung bình của tam giác)

Hay BH // MK

Trong ∆ BCH ta có M là trung điểm của BC

MK // BH

⇒ CK = HK

AK = AH + HK = 2HK

Suy ra: AH = 2 CK.

 

Trường Cao đẳng nghề Thừa Thiên Huế

cdnthuathienhue.edu.vn

Trường Cao Đẳng nghề Thừa Thiên Huế được thành lập theo Quyết định số 209/QĐ-LĐTBXH ngày 22/02/2012 của Bộ trưởng Bộ Lao Động Thương Binh Xã Hội. Là một trong những trường đào tạo nghề trọng điểm của Tỉnh Thừa Thiên Huế và là một trong 36 trường dạy nghề được đầu tư tập trung bằng nguồn vốn dự án "Tăng cường năng lực đào tạo nghề" giai đoạn 2001-2005 của Bộ Lao động - Thương binh và Xã hội.

Có thể bạn cần

Back to top button