Giải bài tập

Giải bài 47, 48, 49 trang 112 SBT Toán 9 tập 1

Giải bài tập trang 112 bài 3 bảng lượng giác Sách bài tập (SBT) Toán 9 tập 1. Câu 47: Cho x là một góc nhọn, biểu thức sau đây có giá trị âm hay dương? Vì sao?…

Câu 47. Trang 112 Sách Bài Tập (SBT) Toán 9 Tập 1

Cho x là một góc nhọn, biểu thức sau đây có giá trị âm hay dương? Vì sao?

a) \(tg28^\circ \) và \(\sin 28^\circ \);                                        b) \(\cot g42^\circ \) và \(\cos 42^\circ \);

c) \(\cot g73^\circ \) và \(\sin 17^\circ \);                                  d) \(tg32^\circ \) và \(\cos 58^\circ \).

Gợi ý làm bài:

a) Ta có: \(0^\circ  

b) Ta có: \(0^\circ   0\)

c) Ta có:  

*                 Nếu x = 45° thì sinx =cosx, suy ra: \({\mathop{\rm s}\nolimits} {\rm{inx}} – \cos x = 0\)

*                 Nếu x

Vì x 45^\circ \), suy ra: \({\mathop{\rm s}\nolimits} {\rm{inx}}

Vậy \({\mathop{\rm s}\nolimits} {\rm{inx}} – \cos x

*     Nếu x > 45°  thì \(\cos x = \sin (90^\circ  – x)\)

Vì x > 45° nên \(90^\circ  – x \sin (90^\circ  – x)\)

Vậy \({\mathop{\rm s}\nolimits} {\rm{inx}} – c{\rm{osx > 0}}\).

d) Ta có:

*     Nếu x = 45° thì tgx = cotgx, suy ra: tgx = cotgx = 0

*     Nếu x

Vì x > 45°  nên \(90^\circ  – x tg(90^\circ  – x)\)

Vậy tgx – cotgx >0.

 


Câu 48. Trang 112 Sách Bài Tập (SBT) Toán 9 Tập 1

a. \(tg28^\circ \) và sin28°                         b. cotg42° và cos42°

c. cotg73° và sin17°                     d. tg32° và cos58°

Gợi ý làm bài:

a) \(tg28^\circ  = {{\sin 28^\circ } \over {\cos 28^\circ }} = \sin 28^\circ .{1 \over {\cos 28^\circ }}\)  (1)

Vì 0 1 \Rightarrow \sin 28^\circ .{1 \over {\cos 28^\circ }} > \sin 28^\circ \)  (2)

Từ (1) và (2) suy ra: tg28° > sin28°

b) Ta có: \(\cot g42^\circ  = {{\cos 42^\circ } \over {\sin 42^\circ }} = c{\rm{os42}}^\circ .{1 \over {\sin 42^\circ }}\)   (1)

Vì 0 1 \Rightarrow \cos 42^\circ .{1 \over {\sin 42^\circ }} > \cos 42^\circ \)  (2)

Từ (1) và (2) suy ra: cotg42° > cos42°

c) Ta có: 17°  +73° =90°   (1)

\(\cot g73^\circ  = {{\cos 73^\circ } \over {\sin 73^\circ }} = \cos 73^\circ .{1 \over {\sin 73^\circ }}\)    (2)

Vì 0 c{\rm{os73}}^\circ \) (3)

Từ (1), (2) và (3) suy ra: cotg73° > sin17°

d) Ta có: 32° +58° = 90°    (1)

\(tg32^\circ  = {{\sin 32^\circ } \over {\cos 32^\circ }} = \sin 32^\circ .{1 \over {\cos 32^\circ }}\)   (2)

Vì 0 1 \Rightarrow \sin 32^\circ .{1 \over {{\rm{cos32}}^\circ }} > \sin 32^\circ \)  (3)

Từ (1), (2) và (3) suy ra: tg32° > cos58°

 


Câu 49. Trang 112 Sách Bài Tập (SBT) Toán 9 Tập 1

Tam giác ABC vuông tại A, có \(AC = {1 \over 2}BC\). Tính :

\(\sin B,\cos B,tgB,\cot gB.\) 

Gợi ý làm bài:

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

\(B{C^2} = A{B^2} + A{C^2}\)

\(\eqalign{
& \Rightarrow A{B^2} = B{C^2} – A{C^2} \cr 
& = B{C^2} – {{B{C^2}} \over 4} = {{3B{C^2}} \over 4} \cr 
& \Rightarrow AB = {{BC\sqrt 3 } \over 2} \cr} \)

Vậy: \(\sin \widehat B = {{AC} \over {BC}} = {{{1 \over 2}BC} \over {BC}} = {1 \over 2}\)

\({\rm{cos}}\widehat B = {{AB} \over {BC}} = {{{{\sqrt 3 } \over 2}BC} \over {BC}} = {{\sqrt 3 } \over 2}\)

\(tg\widehat B = {{AC} \over {AB}} = {{{1 \over 2}BC} \over {{{\sqrt 3 } \over 2}BC}} = {{\sqrt 3 } \over 3}\)

\(\cot g\widehat B = {1 \over {tgB}} = {1 \over {{{\sqrt 3 } \over 3}}} = \sqrt 3 \)

Trường Cao đẳng nghề Thừa Thiên Huế

cdnthuathienhue.edu.vn

Trường Cao Đẳng nghề Thừa Thiên Huế được thành lập theo Quyết định số 209/QĐ-LĐTBXH ngày 22/02/2012 của Bộ trưởng Bộ Lao Động Thương Binh Xã Hội. Là một trong những trường đào tạo nghề trọng điểm của Tỉnh Thừa Thiên Huế và là một trong 36 trường dạy nghề được đầu tư tập trung bằng nguồn vốn dự án "Tăng cường năng lực đào tạo nghề" giai đoạn 2001-2005 của Bộ Lao động - Thương binh và Xã hội.

Có thể bạn cần

Back to top button