Giải bài tập

Giải bài 61, 62, 63, 64 trang 40, 41 SBT Toán 8 tập 1

Giải bài tập trang 40, 41 bài ôn tập Chương II – Phân thức đại số Sách bài tập (SBT) Toán 8 tập 1. Câu 61: Một phân thức có giá trị bằng 0 khi giá trị của tử thức bằng 0 còn giá trị của mẫu thức khác 0…

Câu 61 trang 40 Sách bài tập (SBT) Toán 8 tập1

Một phân thức có giá trị bằng 0 khi giá trị của tử thức bằng 0 còn giá trị của mẫu thức khác 0. Ví dụ giá trị của phân thức \({{{x^2} – 25} \over {x + 1}} = 0\) khi \({x^2} – 25 = 0\) và \(x + 1 \ne 0\) hay \(\left( {x – 5} \right)\left( {x + 5} \right) = 0\) và\(x \ne  – 1\). Vậy giá trị của phân thức này bằng 0 khi \(x =  \pm 5\)

Tìm các giá trị của x để giá trị của mỗi phân thức sau bằng 0 :

a. \({{98{x^2} – 2} \over {x – 2}}\)

b. \({{3x – 2} \over {{x^2} + 2x + 1}}\)

Giải:

a.  \({{98{x^2} – 2} \over {x – 2}}\)= 0 khi \(98{x^2} – 2 = 0\) và x – 2 ≠ 0

Ta có: x – 2 ≠ 0 ⇒ x ≠ 2

\(\eqalign{  & 98{x^2} – 2 = 0 \Rightarrow 2\left( {49{x^2} – 1} \right) = 0 \Rightarrow \left( {7x – 1} \right)\left( {7x + 1} \right) = 0  \cr  &  \Rightarrow \left[ {\matrix{   {7x + 1 = 0}  \cr   {7x – 1 = 0}  \cr}  \Rightarrow \left[ {\matrix{   {x =  – {1 \over 7}}  \cr   {x = {1 \over 7}}  \cr} } \right.} \right. \cr} \)

\(x = {1 \over 7}\)và \(x =  – {1 \over 7}\) thỏa mãn điều kiện x ≠ 2

Vậy \(x = {1 \over 7}\) hoặc \(x =  – {1 \over 7}\) thì phân thức \({{98{x^2} – 2} \over {x – 2}}\) có giá trị bằng 0.

b. \({{3x – 2} \over {{x^2} + 2x + 1}}\)\( = {{3x – 2} \over {{{\left( {x + 1} \right)}^2}}} = 0\) khi 3x – 2 = 0 và \({\left( {x + 1} \right)^2} \ne 0\)

Ta có : \({\left( {x + 1} \right)^2} \ne 0 \Rightarrow x + 1 \ne 0 \Rightarrow x \ne  – 1\)

\(3x – 2 = 0 \Rightarrow x = {2 \over 3}\)

\(x = {2 \over 3}\) thỏa mãn điều kiện x ≠ – 1

Vậy \(x = {2 \over 3}\) thì phân thức \({{3x – 2} \over {{x^2} + 2x + 1}}\) có giá trị bằng 0.


Câu 62 trang 40 Sách bài tập (SBT) Toán 8 tập1

Đối với mỗi biểu thức sau, hãy tìm điều kiện của x để giá trị của biểu thức được xác định :

a. \({{2x – 3} \over {{{x – 1} \over {x + 2}}}}\)

b. \({{{{2{x^2} + 1} \over x}} \over {x – 1}}\)

c. \({{{x^2} – 25} \over {{{{x^2} – 10x + 25} \over x}}}\)

d. \({{{x^2} – 25} \over {{{{x^2} + 10x + 25} \over {x – 5}}}}\)

Giải:

a. \({{2x – 3} \over {{{x – 1} \over {x + 2}}}}\) biểu thức xác định khi x – 1 ≠ 0 và x + 2 ≠ 0

⇒ x ≠ 1 và x ≠ -2. Vậy điều kiện để biểu thức xác định x ≠ 1 và x ≠ – 2

b. \({{{{2{x^2} + 1} \over x}} \over {x – 1}}\) biểu thức xác định khi  và x – 1 ≠ 0

⇒ x ≠ 0 và x ≠ 1.

Vậy điều kiện để biểu thức xác định  x ≠ 0 và x ≠ 1

c. \({{{x^2} – 25} \over {{{{x^2} – 10x + 25} \over x}}}\) biểu thức xác định khi \({x^2} – 10x + 25 \ne 0\) và x ≠ 0

\({x^2} – 10x + 25 \ne 0 \Rightarrow {\left( {x – 5} \right)^2} \ne 0 \Rightarrow x \ne 5\)

Vậy điều kiện để biểu thức xác định là x ≠ 0 và x ≠ 5

d. \({{{x^2} – 25} \over {{{{x^2} + 10x + 25} \over {x – 5}}}}\) biểu thức xác định khi \({x^2} + 10x + 25 \ne 0\) và x – 5 ≠ 0.

\(\eqalign{  & {x^2} + 10x + 25 \ne 0 \Rightarrow {\left( {x + 5} \right)^2} \ne 0 \Rightarrow x \ne  – 5  \cr  & x – 5 \ne 0 \Rightarrow x \ne 5 \cr} \)

Vậy điều kiện để biểu thức xác định x ≠ 5 và x ≠ -5


Câu 63 trang 40 Sách bài tập (SBT) Toán 8 tập 1

Tìm giá trị của x để giá trị của các biểu thức trong bài tập 62 bằng 0

Giải:

a. \({{{{2x – 3} \over {x – 1}}} \over {x + 2}}\) điều kiện x ≠ 1 và x ≠ -2

\( \Rightarrow {{\left( {2x – 3} \right)\left( {x + 2} \right)} \over {x – 1}} = 0\) biểu thức bằng 0 khi \(\left( {2x – 3} \right)\left( {x + 2} \right) = 0\) và \(x – 1 \ne 0\)

\(\left( {2x – 3} \right)\left( {x + 2} \right) = 0 \Rightarrow 2x – 3 = 0\)hoặc \(x + 2 = 0\)

\(2x – 3 = 0 \Rightarrow x = 1,5;x + 2 = 0 \Rightarrow x =  – 2\)

\(x =  – 2\) không thỏa mãn điều kiện, \(x = 1,5\) thỏa mãn điều kiện.

Vậy \(x = 1,5\) thì biểu thức \({{{{2x – 3} \over {x – 1}}} \over {x + 2}}\) có giá trị bằng 0.

b. \({{{{2{x^2} + 1} \over x}} \over {x – 1}} = 0\) điều kiện x ≠ 0 và x ≠ 1

\( \Rightarrow {{2{x^2} + 1} \over {x\left( {x – 1} \right)}} = 0\) biểu thức có giá trị bằng 0 khi \(2{x^2} + 1 = 0\) và \(x\left( {x – 1} \right) \ne 0\)

Ta có: \(2{x^2} \ge 0 \Rightarrow 2{x^2} + 1 \ne 0\) với mọi x

Vậy không có giá trị nào của x để biểu thức \({{{{2{x^2} + 1} \over x}} \over {x – 1}}\) có giá trị bằng 0

c. \({{{x^2} – 25} \over {{{{x^2} – 10x + 25} \over x}}}\) điều kiện x ≠ 0 và x ≠ 5

\( \Rightarrow {{\left( {x + 5} \right)\left( {x – 5} \right)x} \over {{{\left( {x – 5} \right)}^2}}} = 0 \Rightarrow {{x\left( {x + 5} \right)} \over {x – 5}} = 0\)

Biểu thức có giá trị bằng 0 khi x (x + 5) = 0 và x – 5 ≠ 0

\(x\left( {x + 5} \right) = 0 \Rightarrow x = 0\) hoặc \(x + 5 = 0 \Rightarrow x =  – 5\)

x = 0 không thỏa mãn điều kiện,

x = – 5 thỏa mãn điều kiện

Vậy x = -5 thì biểu thức \({{{x^2} – 25} \over {{{{x^2} – 10x + 25} \over x}}}\) có giá trị bằng 0

d. \({{{x^2} – 25} \over {{{{x^2} + 10x + 25} \over {x – 5}}}}\)  điều kiện x ≠ 5 và x ≠ -5

\( \Rightarrow {{\left( {x + 5} \right)\left( {x – 5} \right)\left( {x – 5} \right)} \over {{x^2} + 10x + 25}} = 0 \Rightarrow {{\left( {x + 5} \right){{\left( {x – 5} \right)}^2}} \over {{{\left( {x + 5} \right)}^2}}} = 0\)

\( \Rightarrow {{{{\left( {x – 5} \right)}^2}} \over {x + 5}} = 0\). Biểu thức bằng 0 khi \({\left( {x – 5} \right)^2} = 0\) và \(x + 5 \ne 0\)

\({\left( {x – 5} \right)^2} = 0 \Rightarrow x – 5 = 0 \Rightarrow x = 5\)

\(x = 5\) không thỏa mãn điều kiện.

Vậy không có giá trị nào của x để biểu thức \({{{x^2} – 25} \over {{{{x^2} + 10x + 25} \over {x – 5}}}}\) có giá trị bằng 0.


Câu 64 trang 41 Sách bài tập (SBT) Toán 8 tập 1

Tìm điều kiện của x để giá trị của biểu thức được xác định và chứng minh rằng với điều kiện đó biểu thức không phụ thuộc vào biến :

a. \({{x – {1 \over x}} \over {{{{x^2} + 2x + 1} \over x} – {{2x + 2} \over x}}}\)

b. \({{{x \over {x + 1}} + {1 \over {x – 1}}} \over {{{2x + 2} \over {x – 1}} – {{4x} \over {{x^2} – 1}}}}\)

c. \({1 \over {x – 1}} – {{{x^3} – x} \over {{x^2} + 1}}.\left( {{x \over {{x^2} – 2x + 1}} – {1 \over {{x^2} – 1}}} \right)\)

d. \(\left( {{x \over {{x^2} – 36}} – {{x – 6} \over {{x^2} + 6x}}} \right):{{2x – 6} \over {{x^2} + 6x}} + {x \over {6 – x}}\)

Giải:

a.  \({{x – {1 \over x}} \over {{{{x^2} + 2x + 1} \over x} – {{2x + 2} \over x}}}\)

Ta có: \(x – {1 \over x}\) xác định khi x ≠ 0

\({{{x^2} + 2x + 1} \over x} – {{2x + 2} \over x}\) xác định khi x ≠ 0

\(\eqalign{  & {{{x^2} + 2x + 1} \over x} – {{2x + 2} \over x} \ne 0 \Rightarrow {{{x^2} – 1} \over x} \ne 0 \Rightarrow {x^2} – 1 \ne 0  \cr  &  \Rightarrow \left( {x + 1} \right)\left( {x – 1} \right) \ne 0 \Rightarrow x \ne  – 1;x \ne 1 \cr} \)

Vậy với x ≠ 0, x ≠ 1 và x ≠ -1 thì biểu thức xác định.

\({{x – {1 \over x}} \over {{{{x^2} + 2x + 1} \over x} – {{2x + 2} \over x}}}\)\( = {{{{{x^2} – 1} \over x}} \over {{{{x^2} – 1} \over x}}} = {{{x^2} – 1} \over x}.{x \over {{x^2} – 1}} = 1\)

b.  \({{{x \over {x + 1}} + {1 \over {x – 1}}} \over {{{2x + 2} \over {x – 1}} – {{4x} \over {{x^2} – 1}}}}\)

Ta có: \({x \over {x + 1}} + {1 \over {x – 1}}\) xác định khi x + 1 ≠ 0 và x – 1 ≠ 0 ⇒ \(x \ne  \pm 1\)

\({{2x + 2} \over {x – 1}} – {{4x} \over {{x^2} – 1}}\) xác định khi x – 1 ≠ 0 và \({x^2} – 1 \ne 0 \Rightarrow x \ne  \pm 1\)

\({{2x + 2} \over {x – 1}} – {{4x} \over {{x^2} – 1}} \ne 0 \Rightarrow {{\left( {2x + 2} \right)\left( {x + 1} \right) – 4x} \over {\left( {x – 1} \right)\left( {x + 1} \right)}} \ne 0\)

\( \Rightarrow {{2{x^2} + 2x + 2x + 2 – 4x} \over {\left( {x – 1} \right)\left( {x + 1} \right)}} \ne 0 \Rightarrow {{2{x^2} + 2} \over {\left( {x + 1} \right)\left( {x – 1} \right)}} \ne 0\) mọi x

Vậy điều kiện để biểu thức xác định x ≠ 1 và x ≠ -1

\({{{x \over {x + 1}} + {1 \over {x – 1}}} \over {{{2x + 2} \over {x – 1}} – {{4x} \over {{x^2} – 1}}}}\)\( = {{{{x\left( {x – 1} \right) + \left( {x + 1} \right)} \over {\left( {x + 1} \right)\left( {x – 1} \right)}}} \over {{{2{x^2} + 2} \over {\left( {x + 1} \right)\left( {x – 1} \right)}}}} = {{{x^2} + 1} \over {\left( {x + 1} \right)\left( {x – 1} \right)}}.{{\left( {x + 1} \right)\left( {x – 1} \right)} \over {2\left( {{x^2} + 1} \right)}} = {1 \over 2}\)

c. \({1 \over {x – 1}} – {{{x^3} – x} \over {{x^2} + 1}}.\left( {{x \over {{x^2} – 2x + 1}} – {1 \over {{x^2} – 1}}} \right)\)

Biểu thức xác định khi x – 1 ≠ 0, \({x^2} – 2x + 1 \ne 0\)và \({x^2} – 1 \ne 0\)

\(\eqalign{  & x – 1 \ne 0 \Rightarrow x \ne 1  \cr  & {x^2} – 2x + 1 \ne 0 \Rightarrow {\left( {x – 1} \right)^2} \ne 0 \Rightarrow x \ne 1  \cr  & {x^2} – 1 \ne 0 \Rightarrow \left( {x + 1} \right)\left( {x – 1} \right) \ne 0 \Rightarrow x \ne  – 1;x \ne 1 \cr} \)

Vậy biểu thức xác định với x ≠ -1 và x ≠ 1

Ta có: \({1 \over {x – 1}} – {{{x^3} – x} \over {{x^2} + 1}}.\left( {{x \over {{x^2} – 2x + 1}} – {1 \over {{x^2} – 1}}} \right)\)

\(\eqalign{  &  = {1 \over {x – 1}} – {{x\left( {{x^2} – 1} \right)} \over {{x^2} + 1}}.\left[ {{x \over {{{\left( {x – 1} \right)}^2}}} – {1 \over {\left( {x + 1} \right)\left( {x – 1} \right)}}} \right]  \cr  &  = {1 \over {x – 1}} – {{x\left( {x + 1} \right)\left( {x – 1} \right)} \over {{x^2} + 1}}.{{x\left( {x + 1} \right) – \left( {x – 1} \right)} \over {\left( {x + 1} \right){{\left( {x – 1} \right)}^2}}}  \cr  &  = {1 \over {x – 1}} – {{x\left( {{x^2} + x – x + 1} \right)} \over {\left( {{x^2} + 1} \right)\left( {x – 1} \right)}} = {1 \over {x – 1}} – {{x\left( {{x^2} + 1} \right)} \over {\left( {{x^2} + 1} \right)\left( {x – 1} \right)}} = {1 \over {x – 1}} – {x \over {x – 1}}  \cr  &  = {{ – \left( {x – 1} \right)} \over {x – 1}} =  – 1 \cr} \)

d. \(\left( {{x \over {{x^2} – 36}} – {{x – 6} \over {{x^2} + 6x}}} \right):{{2x – 6} \over {{x^2} + 6x}} + {x \over {6 – x}}\)

Biểu thức xác định khi

\(\eqalign{  & {x^2} – 36 \ne 0,{x^2} + 6x \ne 0,6 – x \ne 0,2x – 6 \ne 0  \cr  & {x^2} – 36 \ne 0 \Rightarrow \left( {x – 6} \right)\left( {x + 6} \right) \ne 0 \Rightarrow x \ne 6;x \ne  – 6  \cr  & {x^2} + 6x \ne 0 \Rightarrow x\left( {x + 6} \right) \ne 0 \Rightarrow x \ne 0;x \ne  – 6  \cr  & 6 – x \ne 0 \Rightarrow x \ne 6  \cr  & 2x – 6 \ne 0 \Rightarrow x \ne 3 \cr} \)

Vậy x ≠ 0, x ≠ 3, x ≠ 6 và x ≠ -6 thì biểu thức xác định.

Ta có : \(\left( {{x \over {{x^2} – 36}} – {{x – 6} \over {{x^2} + 6x}}} \right):{{2x – 6} \over {{x^2} + 6x}} + {x \over {6 – x}}\)

\(\eqalign{  &  = \left[ {{x \over {\left( {x + 6} \right)\left( {x – 6} \right)}} – {{x – 6} \over {x\left( {x + 6} \right)}}} \right]:{{2x – 6} \over {x\left( {x + 6} \right)}} + {x \over {6 – x}}  \cr  &  = {{{x^2} – {{\left( {x – 6} \right)}^2}} \over {x\left( {x + 6} \right)\left( {x – 6} \right)}}.{{x\left( {x + 6} \right)} \over {2\left( {x – 3} \right)}} + {x \over {6 – x}} = {{{x^2} – {x^2} + 12x – 36} \over {x\left( {x + 6} \right)\left( {x – 6} \right)}}.{{x\left( {x + 6} \right)} \over {2\left( {x – 3} \right)}} + {x \over {6 – x}}  \cr  &  = {{12\left( {x – 3} \right)} \over {x – 6}}.{1 \over {2\left( {x – 3} \right)}} + {x \over {6 – x}} = {6 \over {x – 6}} – {x \over {x – 6}} = {{ – \left( {x – 6} \right)} \over {x – 6}} =  – 1 \cr} \)

Trường Cao đẳng nghề Thừa Thiên Huế

cdnthuathienhue.edu.vn

Trường Cao Đẳng nghề Thừa Thiên Huế được thành lập theo Quyết định số 209/QĐ-LĐTBXH ngày 22/02/2012 của Bộ trưởng Bộ Lao Động Thương Binh Xã Hội. Là một trong những trường đào tạo nghề trọng điểm của Tỉnh Thừa Thiên Huế và là một trong 36 trường dạy nghề được đầu tư tập trung bằng nguồn vốn dự án "Tăng cường năng lực đào tạo nghề" giai đoạn 2001-2005 của Bộ Lao động - Thương binh và Xã hội.

Có thể bạn cần

Back to top button