Giải bài tập

Giải bài 80, 81, 82, 83 trang 18, 19 SBT Toán 9 tập 1

Giải bài tập trang 18, 19 bài 8 Rút gọn biểu thức chứa căn thức bậc hai Sách bài tập (SBT) Toán 9 tập 1. Câu 80: Rút gọn các biểu thức…

Câu 80 trang 18 Sách Bài Tập (SBT) Toán 9 Tập 1

Rút gọn các biểu thức:

a) \((2 – \sqrt 2 )( – 5\sqrt 2 ) – {(3\sqrt 2  – 5)^2}\);

b) \(2\sqrt {3a}  – \sqrt {75a}  + a\sqrt {{{13,5} \over {2a}}}  – {2 \over 5}\sqrt {300{a^3}} \) với \(a \ge 0\)

Gợi ý làm bài

a) \((2 – \sqrt 2 )( – 5\sqrt 2 ) – {(3\sqrt 2  – 5)^2}\)

\( =  – 10\sqrt 2  + 5\sqrt {{2^2}}  – (18 – 30\sqrt 2  + 25)\)

\( =  – 10\sqrt 2  + 10 – 18 + 30\sqrt 2  – 25 = 20\sqrt 2  – 33\)

b) \(2\sqrt {3a}  – \sqrt {75a}  + a\sqrt {{{13,5} \over {2a}}}  – {2 \over 5}\sqrt {300{a^3}} \)

\( = 2\sqrt {3a}  – \sqrt {25.3a}  + a\sqrt {{{9.3} \over {4a}}}  – {2 \over 5}\sqrt {100{a^2}.3a} \)

\( = 2\sqrt {3a}  – 5\sqrt {3a}  + {3 \over 2}\sqrt {3a}  – 4a\sqrt {3a} \) (với a>0)

 


Câu 81 trang 18 Sách Bài Tập (SBT) Toán 9 Tập 1

Rút gọn các biểu thức:

a) \({{\sqrt a  + \sqrt b } \over {\sqrt a  – \sqrt b }} + {{\sqrt a  – \sqrt b } \over {\sqrt a  + \sqrt b }}\)

với \(a \ge 0,b \ge 0\) và \(a \ne b\)

b) \({{a – b} \over {\sqrt a  – \sqrt b }} + {{\sqrt {{a^3} – \sqrt {{b^3}} } } \over {a – b}}\) với \(a \ge 0,b \ge 0\) và \(a \ne b\)

Gợi ý làm bài

a) Ta có:

\({{\sqrt a  + \sqrt b } \over {\sqrt a  – \sqrt b }} + {{\sqrt a  – \sqrt b } \over {\sqrt a  + \sqrt b }} = {{{{\left( {\sqrt a  + \sqrt b } \right)}^2} + {{\left( {\sqrt a  – \sqrt b } \right)}^2}} \over {\left( {\sqrt a  + \sqrt b } \right)\left( {\sqrt a  – \sqrt b } \right)}}\)

\( = {{a + 2\sqrt {ab}  + b + a – 2\sqrt {ab}  + b} \over {a – b}}\)

\( = {{2(a + b)} \over {a – b}}\) (với \(a \ge 0,b \ge 0\) và \(a \ne b\))

b) Ta có: \({{a – b} \over {\sqrt a  – \sqrt b }} + {{\sqrt {{a^3} – \sqrt {{b^3}} } } \over {a – b}}\)

\( = {{(a – b)(\sqrt a  + \sqrt {b)} } \over {{{\left( {\sqrt a } \right)}^2} – {{\left( {\sqrt b } \right)}^2}}} – {{a\sqrt a  – b\sqrt b } \over {a – b}}\)

\( = {{a\sqrt a  + a\sqrt b  – b\sqrt a  – b\sqrt b } \over {a – b}} – {{a\sqrt a  – b\sqrt b } \over {a – b}}\)

\( = {{a\sqrt a  + a\sqrt b  – b\sqrt a  – b\sqrt b  – a\sqrt a  + b\sqrt b } \over {a – b}}\)

\( = {{a\sqrt b  – b\sqrt a } \over {a – b}}\) (với \(a \ge 0,b \ge 0\) và \(a \ne b\))

 


Câu 82 trang 18 Sách Bài Tập (SBT) Toán 9 Tập 1

a) Chứng mình:

\({x^2} + x\sqrt 3  + 1 = {\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\)

b) Tìm giá trị nhỏ nhất của biểu thức: \({x^2} + x\sqrt 3  + 1\). Giá trị đó đạt được khi x bằng bao nhiêu?

Gợi ý làm bài

a) Ta có:

\({x^2} + x\sqrt 3  + 1 = {x^2} + 2x{{\sqrt 3 } \over 2} + {3 \over 4} + {1 \over 4}\)

\(\eqalign{
& = {x^2} + 2x{{\sqrt 3 } \over 2} + {\left( {{{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4} \cr 
& = {\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4} \cr} \)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

b) Ta có:

\({x^2} + x\sqrt 3  + 1 = {\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\)

Vì \({\left( {x + {{\sqrt 3 } \over 2}} \right)^2} \ge 0\) với mọi x nên \({\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4} \ge {1 \over 4}\)

Giá trị biểu thức \({\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\) bằng \({1 \over 4}\) khi \({\left( {x + {{\sqrt 3 } \over 2}} \right)^2} = 0\)

Suy ra: \(x =  – {{\sqrt 3 } \over 2}.\)

 


Câu 83 trang 19 Sách Bài Tập (SBT) Toán 9 Tập 1

Chứng tỏ giá trị các biểu thức sau là số hữu tỉ:

a) \({2 \over {\sqrt 7  – 5}} – {2 \over {\sqrt 7  + 5}}\);

b) \(\,{{\sqrt 7  + 5} \over {\sqrt 7  – 5}} + {{\sqrt 7  – 5} \over {\sqrt 7  + 5}}.\)

Gợi ý làm bài

a) Rút gọn biểu thức ta được \({{ – 10} \over {9}}$\) là số hữu tỉ.

b) Rút gọn biểu thức ta được 12 là số hữu tỉ.

 Trường Cao đẳng nghề Thừa Thiên Huế

cdnthuathienhue.edu.vn

Trường Cao Đẳng nghề Thừa Thiên Huế được thành lập theo Quyết định số 209/QĐ-LĐTBXH ngày 22/02/2012 của Bộ trưởng Bộ Lao Động Thương Binh Xã Hội. Là một trong những trường đào tạo nghề trọng điểm của Tỉnh Thừa Thiên Huế và là một trong 36 trường dạy nghề được đầu tư tập trung bằng nguồn vốn dự án "Tăng cường năng lực đào tạo nghề" giai đoạn 2001-2005 của Bộ Lao động - Thương binh và Xã hội.

Có thể bạn cần

Back to top button