Giải bài tập

Giải bài 96, 97, 98, 99 trang 92 SBT Toán 8 tập 1

Giải bài tập trang 92 bài 8 đối xứng tâm Sách bài tập (SBT) Toán 8 tập 1. Câu 96: Cho hình bình hành ABCD, O là giao điểm của hai đường chéo…

Câu 96 trang 92 Sách bài tập (SBT) Toán 8 tập 1

Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt hai cạnh đối AD, BC ở E, F. Chứng minh rằng các điểm E và F đối xứng nhau qua điểm O.

Giải:                                                                           

Xét ∆ OED và ∆ OFB:

\(\widehat {EOD} = \widehat {FOB}\) (đối đỉnh)

OD = OB (tính chất hình bình hành)

\(\widehat {ODE} = \widehat {OBF}\) (so le trong)

Do đó: ∆ OED = ∆ OFB (g.c.g)

⇒ OE = OF

nên O là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm O.

 


Câu 97 trang 92 Sách bài tập (SBT) Toán 8 tập 1

Cho hình 15 trong đó ABCD là hình bình hành. Chứng minh rằng các điểm H và K đối xứng với nhau qua điểm O.

Giải:                                                                     

Xét hai tam giác vuông AHO và CKO:

\(\widehat {AHO} = \widehat {CKO} = {90^0}\)

OA = OC ( tính chất hình bình hành)

\(\widehat {AOH} = \widehat {COK}\) (đối đỉnh)

Do đó: ∆ AHO = ∆ CKO (cạnh huyền, góc nhọn)

⇒ OH = OK

nên O là trung điểm của HK hay điểm H đối xứng với điểm K qua điểm O.

 


Câu 98 trang 92 Sách bài tập (SBT) Toán 8 tập 1

Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Gọi O là một điểm bất kì nằm trong tam giác ABC. Vẽ điểm M đối xứng với O qua D, vẽ điểm N đối xứng với O qua E. Chứng minh rằng MNCB là hình bình hành.

Giải:

Xét tứ giác AOBM:

DA = DB (gt)

DO = DM (định nghĩa đối xứng tâm)

Suy ra: Tứ giác AOBM là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

⇒ BM // AO và BM = AO (1)

Xét tứ giác AOCN:

EA = EC (gt)

EO = EN (định nghĩa đối xứng tâm)

Suy ra: Tứ giác AOCN là hình bình hành ( vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

⇒ CN // AO và CN = AO (2)

Từ (1) và (2) suy ra: BM // CN và BM = CN

Vậy : Tứ giác BMNC là hình bình hành ( vì có một cặp cạnh đối song song và bằng nhau)

 


Câu 99 trang 92 Sách bài tập (SBT) Toán 8 tập 1

Cho tam giác ABC, các đường trung tuyến AD, BE, CF cắt nhau ở G. Gọi H là điểm đối xứng với G qua D, I là điểm đối xứng với G qua E, K là điểm đối xứng với G qua F. Tìm các điểm đối xứng với A, với B, với C qua G.

Giải:                                                                          

Ta có: GD = DH (tính chất đối xứng tâm)

⇒ GH = 2GD (1)

GA = 2GD ( tính chất đường trung tuyến của tam giác) (2)

Từ (1) và (2) suy ra: GA = GH

nên điểm đối xứng với điểm A qua tâm G là điểm H

GE = EI (tính chất đối xứng tâm)

⇒ GI = 2GE (3)

GB = 2GE (tính chất đường trung tuyến của tam giác) (4)

Từ (3) và (4) suy ra: GB = GI

nên điểm đối xứng với điểm B qua tâm G là điểm I

GF = FK (tính chất đối xứng tâm)

⇒ GK = 2GF (5)

GC = 2GF (tính chất đường trung tuyến của tam giác) (6)

Từ (5) và (6) suy ra: GC = GK

nên điểm đối xứng với điểm C qua tâm G là điểm K

Trường Cao đẳng nghề Thừa Thiên Huế

cdnthuathienhue.edu.vn

Trường Cao Đẳng nghề Thừa Thiên Huế được thành lập theo Quyết định số 209/QĐ-LĐTBXH ngày 22/02/2012 của Bộ trưởng Bộ Lao Động Thương Binh Xã Hội. Là một trong những trường đào tạo nghề trọng điểm của Tỉnh Thừa Thiên Huế và là một trong 36 trường dạy nghề được đầu tư tập trung bằng nguồn vốn dự án "Tăng cường năng lực đào tạo nghề" giai đoạn 2001-2005 của Bộ Lao động - Thương binh và Xã hội.

Có thể bạn cần

Back to top button