Giải bài tập

Giải bài 15, 16, 17, 18 trang 7 SBT Toán 8 tập 1

Giải bài tập trang 7 bài 3, 4, 5 những hằng đẳng thức đáng nhớ Sách bài tập (SBT) Toán 8 tập 1. Câu 15: Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng…

Câu 15 trang 7 Sách bài tập (SBT) Toán 8 tập 1

Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng \({a^2}\) chia cho 5 dư 1.

Giải:

Số tự nhiên a chia cho 5 dư 4 ⟹a=5k+4 (k∈N)

Ta có: \(\eqalign{  & {a^2} = {\left( {5k + 4} \right)^2} = 25{k^2} + 40k + 16 = 25{k^2} + 40k + 15 + 1  \cr  &  \cr} \)   

                 \( = 5\left( {5{k^2} + 8k + 3} \right) + 1\)                

                 \( = 5\left( {5{k^2} + 8k + 3} \right) + 1 \vdots 5\) .

Vậy \({a^2} = {\left( {5k + 4} \right)^2}\) chia cho 5 dư 1


Câu 16 trang 7 Sách bài tập (SBT) Toán 8 tập 1

Tính giá trị của các biểu thức sau:

a. \({x^2} – {y^2}\)  tại \(x = 87\)  và  \(y = 13\)

b. \({x^3} – 3{x^2} + 3x – 1\) tại \(x = 101\)

c. \({x^3} + 9{x^2} + 27x + 27\)  tại \(x = 97\)

Giải:

a. \({x^2} – {y^2}\)\(= \left( {x + y} \right)\left( {x – y} \right)\) . Thay \(x = 87;y = 13\)

     Ta có: \({x^2} – {y^2}\)\( = \left( {x + y} \right)\left( {x – y} \right)\)

\( = \left( {87 + 13} \right)\left( {87 – 13} \right) = 100.74 = 7400\)

b. \({x^3} – 3{x^2} + 3x – 1\) \( = {\left( {x – 1} \right)^3}\)

Thay \(x = 101\)

Ta có: \({\left( {x – 1} \right)^3} = {\left( {101 – 1} \right)^3} = {100^3} = 1000000\)

c. \({x^3} + 9{x^2} + 27x + 27\) \( = {x^3} + 3.{x^2}.3 + 3.x{.3^2} + {3^3} = {\left( {x + 3} \right)^3}\)

Thay \(x = 97\)  ta có:

\({\left( {x + 3} \right)^3} = {\left( {97 + 3} \right)^3} = {100^3} = 1000000\)


Câu 17 trang 7 Sách bài tập (SBT) Toán 8 tập 1

Chứng minh rằng:

a. \(\left( {a + b} \right)\left( {{a^2} – ab + {b^2}} \right) + \left( {a – b} \right)\left( {{a^2} + ab + {b^2}} \right) = 2{a^3}\)

b. \(\left( {a + b} \right)\left[ {{{\left( {a – b} \right)}^2} + ab} \right] = \left( {a + b} \right)\left[ {{a^2} – 2ab + {b^2} + ab} \right] = {a^3} + {b^3}\)

c. \(\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right) = {\left( {ac + bd} \right)^2} + {\left( {ad – bc} \right)^2}\)

Giải:                                                

a. Biến đổi vế trái:

\(\eqalign{  & \left( {a + b} \right)\left( {{a^2} – ab + {b^2}} \right) + \left( {a – b} \right)\left( {{a^2} + ab + {b^2}} \right)  \cr  &  = a{}^3 + {b^3} + {a^3} – {b^3} = 2{a^3} \cr} \)

Vế trái bằng vế phải, đẳng thức được chứng minh.

b. Biến đổi vế phải:

\(\eqalign{  & \left( {a + b} \right)\left[ {{{\left( {a – b} \right)}^2} + ab} \right] = \left( {a + b} \right)\left[ {{a^2} – 2ab + {b^2} + ab} \right]  \cr  &  = \left( {a + b} \right)\left( {{a^2} – ab + {b^2}} \right) = {a^3} + {b^3} \cr} \)

Vế phải bằng vế trái, vậy đẳng thức được chứng minh.

c. Biến đổi vế phải:

\(\eqalign{  & {\left( {ac + bd} \right)^2} + {\left( {ad – bc} \right)^2} = {a^2}{c^2} + 2abcd + {b^2}{d^2} + {a^2}{d^2} – 2abcd + {b^2}{c^2}  \cr  &  = {a^2}{c^2} + {b^2}{d^2} + {a^2}{d^2} + {b^2}{c^2} = c\left( {{a^2} + {b^2}} \right) + {d^2}\left( {{a^2} + {b^2}} \right)  \cr  &  = \left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right) \cr} \)

Vế phải bằng vế trái, đẳng  thức được chứng minh.


Câu 18 trang 7 Sách bài tập (SBT) Toán 8 tập 1

Chứng tỏ rằng:

a. \({x^2} – 6x + 10 > 0\)  với mọi \(x\)

b. \(4x – {x^2} – 5

Giải:

a. \({x^2} – 6x + 10 = {x^2} – 2.x.3 + 9 + 1 = {\left( {x – 3} \right)^2} + 1\)

Ta có: \({\left( {x – 3} \right)^2} \ge 0\) với mọi \(x\)  nên \({\left( {x – 3} \right)^2} + 1 > 0\)  mọi \(x\)

Vậy \({x^2} – 6x + 10 > 0\) với mọi \(x\)

 

b. \(4x – {x^2} – 5 =  – \left( {{x^2} – 4x + 4} \right) – 1 =  – {\left( {x – 2} \right)^2} – 1\)

Ta có: \({\left( {x – 2} \right)^2} \ge 0\) với mọi  ⇒\( – {\left( {x – 2} \right)^2} \le 0\)  mọi \(x\)

⇒\( – {\left( {x – 2} \right)^2} – 1

Vậy \(4x – {x^2} – 5

Trường Cao đẳng nghề Thừa Thiên Huế

cdnthuathienhue.edu.vn

Trường Cao Đẳng nghề Thừa Thiên Huế được thành lập theo Quyết định số 209/QĐ-LĐTBXH ngày 22/02/2012 của Bộ trưởng Bộ Lao Động Thương Binh Xã Hội. Là một trong những trường đào tạo nghề trọng điểm của Tỉnh Thừa Thiên Huế và là một trong 36 trường dạy nghề được đầu tư tập trung bằng nguồn vốn dự án "Tăng cường năng lực đào tạo nghề" giai đoạn 2001-2005 của Bộ Lao động - Thương binh và Xã hội.

Có thể bạn cần

Back to top button