Giải bài tập

Giải bài 85, 86, 87, 88 trang 23 SBT Toán 7 tập 1

Giải bài tập trang 23 bài 9 số thập phân hữu hạn, số thập phân vô hạn tuần hoàn Sách Bài Tập Toán lớp 7 tập 1. Câu 85: Giải thích vì sao các phân số sau viết được dưới dạng số thập phân hữu hạn rồi viết chúng dưới dạng đó…

Câu 85 trang 23 Sách Bài Tập (SBT) Toán 7 tập 1

Giải thích vì sao các phân số sau viết được dưới dạng số thập phân hữu hạn rồi viết chúng dưới dạng đó:

\({{ – 7} \over {16}};{2 \over {125}};{{11} \over {40}};{{ – 14} \over {25}}\)                    

Giải

Các phân số \({{ – 7} \over {16}};{2 \over {125}};{{11} \over {40}};{{ – 14} \over {25}}\) viết được dưới dạng số thập phân hữu hạn vì mẫu số của các phân số đó chỉ có thừa số nguyên 2 và 5.

\({{ – 7} \over {16}} =  – 0,4375;{2 \over {125}} = 0,016;\)

\({{11} \over {40}} = 0,275;{{ – 14} \over {25}} =  – 0,56\)

 


Câu 86 trang 23 Sách Bài Tập (SBT) Toán 7 tập 1

Viết dưới dạng gọn (có chu kì trong dấu ngoặc) các số thập phân vô hạn tuần hoàn sau:

0,3333 ; -1,3212121… ; 2,513513513… ;13,26535353…

Giải

0,3333  = 0.(3)                                    

-1,3212121… = -1,3(21) 

2,513513513…  2,(513)                      

13,26535353…=13,26(53)

 

Câu 87 trang 23 Sách Bài Tập (SBT) Toán 7 tập 1

Giải thích vì sao các phân số sau viết được dưới dạng số thập phân vô hạn tuần hoàn rồi viết chúng dưới dạng đó:

\({5 \over 6};{{ – 5} \over 3};{7 \over {15}};{{ – 3} \over {11}}\)

Giải

Các phân số \({5 \over 6};{{ – 5} \over 3};{7 \over {15}};{{ – 3} \over {11}}\) được viết dưới dạng số thập phân vô hạn tuần hoàn vì mẫu số của các phân số đó có chứa thừa số nguyên tố khác 2 và 5.

\({5 \over 6} = 0,8333… = 0,8(3)\)

\({{ – 5} \over 3} =  – 1,666… =  – 1,(6)\)

\({7 \over {15}} = 0,4666… = 0,4(6)\)

\({{ – 3} \over {11}} =  – 0,272727… =  – 0,(27)\)

 


Câu 88 trang 23 Sách Bài Tập (SBT) Toán 7 tập 1

Để viết số 0,(25) dưới dạng phân số, ta làm như sau:

\(0,\left( {25} \right){\rm{ }} = {\rm{ }}0,\left( {01} \right).25 = {1 \over {99}}.25 = {{25} \over {99}}\) (Vì \({1 \over {99}} = 0,(01)\))

Theo cách trên, hãy viết các số thập phân sau đây dưới dạng phân số:

0,(34) ; 0,(5) ; 0,(123)

Giải

Ta có:

\(\eqalign{
& 0,(34) = 0,(01).34 = {1 \over {99}}.34 = {{34} \over {99}} \cr
& 0,(5) = 0,(1).5 = {1 \over 9}.5 = {5 \over 9} \cr
& 0,(123) = 0,(001).123 = {1 \over {999}}.123 = {{123} \over {999}} = {{41} \over {333}} \cr} \)

Trường Cao đẳng nghề Thừa Thiên Huế

cdnthuathienhue.edu.vn

Trường Cao Đẳng nghề Thừa Thiên Huế được thành lập theo Quyết định số 209/QĐ-LĐTBXH ngày 22/02/2012 của Bộ trưởng Bộ Lao Động Thương Binh Xã Hội. Là một trong những trường đào tạo nghề trọng điểm của Tỉnh Thừa Thiên Huế và là một trong 36 trường dạy nghề được đầu tư tập trung bằng nguồn vốn dự án "Tăng cường năng lực đào tạo nghề" giai đoạn 2001-2005 của Bộ Lao động - Thương binh và Xã hội.

Có thể bạn cần

Back to top button