Giải bài tập

Giải bài 47, 48, 49, 50 trang 27, 29, 30 SGK Toán 9 tập 1

Giải bài tập trang 27, 29, 30 bài 6 + 7 biến đổi đơn giản biểu thức chứa căn thức bậc hai Toán 9 tập 1. Câu 47: Rút gọn…

Bài 47 trang 27 sgk Toán 9 – tập 1

Bài 47. Rút gọn:

a) \({2 \over {{x^2} – {y^2}}}\sqrt {{{3{{\left( {x + y} \right)}^2}} \over 2}} \) với x ≥ 0; y ≥ 0 và x ≠ y

b) \({2 \over {2{\rm{a}} – 1}}\sqrt {5{{\rm{a}}^2}\left( {1 – 4{\rm{a}} + 4{{\rm{a}}^2}} \right)}\) với a > 0,5.

Hướng dẫn giải:

a) 

\(\eqalign{
& {2 \over {{x^2} – {y^2}}}\sqrt {{{3{{\left( {x + y} \right)}^2}} \over 2}} \cr
& = {2 \over {{x^2} – {y^2}}}\left| {x + y} \right|\sqrt {{3 \over 2}} \cr
& {{x + y} \over {{x^2} – {y^2}}}\sqrt {{2^2}.{3 \over 2}} = {{\sqrt 6 } \over {x – y}} \cr} \)

vì x ≥ 0; y ≥ 0 và x ≠ y nên x + y > 0

b) 

\(\eqalign{
& {2 \over {2{\rm{a}} – 1}}\sqrt {5{{\rm{a}}^2}\left( {1 – 4{\rm{a}} + 4{{\rm{a}}^2}} \right)} \cr
& = {2 \over {2{\rm{a}} – 1}}\sqrt {5{{\rm{a}}^2}{{\left( {1 – 2{\rm{a}}} \right)}^2}} \cr
& = {{2\left| a \right|.\left| {1 – 2{\rm{a}}} \right|\sqrt 5 } \over {2{\rm{a}} – 1}} \cr
& = {{2.a\left( {2{\rm{a}} – 1} \right)\sqrt 5 } \over {2{\rm{a}} – 1}} = 2\sqrt 5 a \cr} \)

Vì a > 0,5 nên a > 0; 1 – 2a


Bài 48 trang 29 sgk Toán 9 – tập 1

Bài 48. Khử mẫu của biểu thức lấy căn 

\(\sqrt{\frac{1}{600}};\,\,\sqrt{\frac{11}{540}};\,\,\sqrt{\frac{3}{50}};\,\,\sqrt{\frac{5}{98}}; \,\,\sqrt{\frac{(1-\sqrt{3})^{2}}{27}}.\)

Hướng dẫn giải:

\(\sqrt{\frac{1}{600}}=\sqrt{\frac{1.6}{6.6.10.10}}=\frac{\sqrt{6}}{60}\)

\(\sqrt{\frac{11}{540}}=\sqrt{\frac{11.15}{6.6.15.15}}=\frac{\sqrt{165}}{90}\)

\(\sqrt{\frac{3}{50}}=\sqrt{\frac{3.2}{5.5.2.2}}=\frac{\sqrt{6}}{10}\)

\(\sqrt{\frac{(1-\sqrt{3})^{2}}{27}}=\frac{|1-\sqrt{3}|}{3\sqrt{3}}=\frac{(\sqrt{3}-1).\sqrt{3}}{9}\)

 


Bài 49 trang 29 sgk Toán 9 – tập 1

Khử mẫu của biểu thức lấy căn

\(ab\sqrt{\frac{a}{b}};\,\,\, \frac{a}{b}\sqrt{\frac{b}{a}};\,\,\, \sqrt{\frac{1}{b}+\frac{1}{b^{2}}};\,\,\,\ \sqrt{\frac{9a^{3}}{36b}};\,\,\, 3xy\sqrt{\frac{2}{xy}}.\)

(Giả thiết các biểu thức có nghĩa).

Hướng dẫn giải:

\(\sqrt{\frac{a}{b}}\) có nghĩa khi \(\frac{a}{b}\geq 0\) và \(\sqrt{\frac{a}{b}}=\frac{\sqrt{ab}}{\left | b \right |}.\)

Nếu \(a\geq 0, b> 0\) thì \(ab\sqrt{\frac{a}{b}}=a\sqrt{ab}.\)

Nếu \(a

Tương tự như vậy ta có: \(\frac{a}{b}\sqrt{\frac{b}{a}}=\frac{\sqrt{ba}}{b}.\)

Nếu \(a>0,b>0\) thì \(\frac{a}{b}\sqrt{\frac{b}{a}}=\frac{a}{b}\frac{\sqrt{ba}}{\left | a \right |}.\)

Nếu \(a

Ta có: \(\sqrt{\frac{1}{b}+\frac{1}{b^{2}}}=\sqrt{\frac{b+1}{b^{2}}}=\frac{\sqrt{b+1}}{\left | b \right |}.\)

Điều kiện để căn thức có nghĩa là \(b+1\geq 0\) hay \(b\geq -1.\) 

Do đó:

Nếu b>0 thì \(\sqrt{\frac{1}{b}+\frac{1}{b^{2}}}=\frac{\sqrt{b+1}}{ b }.\)

Nếu \(-1\leq b

Điều kiện để \(\sqrt{\frac{9a^{3}}{36b}}\) có nghĩa là \(\frac{9a^{3}}{36b}\geq 0\) hay \(\frac{a}{b}\geq 0\)

Cách 1

\(\sqrt{\frac{9a^{3}}{36b}}=\sqrt{\frac{a^{3}}{4b}}=\frac{\sqrt{4a^{3}b}}{4\left | b \right |}=\frac{\sqrt{4a^{2}\cdot ab}}{4\left | b \right |}=\frac{2\left | a \right |\sqrt{ab}}{4b}.\)

=\(\frac{1}{2}\left | \frac{a}{b} \right |\sqrt{ab}=\frac{a\sqrt{ab}}{2b}.\)

Cách 2.

Biến mẫu thành một bình phương rồi áp dụng quy tắc khai phương một thương:

\(\sqrt{\frac{9a^{3}}{36b}}=\sqrt{\frac{a^{3}b}{4b^{2}}}=\frac{\sqrt{a^{3}b}}{\sqrt{ab^{2}}}=\frac{\left | a \right |\sqrt{ab}}{2\left | b \right |}=\frac{1}{2}\left | \frac{a}{b} \right |\sqrt{ab}=\frac{a\sqrt{ab}}{2b}.\)

Điều kiện để \(\sqrt{\frac{2}{xy}}\) có nghĩa là \(\frac{2}{xy}\geq 0\) hay xy>0.

Do đó 

\(3xy\sqrt{\frac{2}{xy}}=3xy\frac{\sqrt{2xy}}{\left | xy \right |}=3xy\frac{\sqrt{2xy}}{xy}=3\sqrt{2xy}.\)

 


Bài 50 trang 30 sgk Toán 9 – tập 1

Trục căn thức ở mẫu với giả thiết các biểu thức chữ đều có nghĩa:

\(\frac{5}{\sqrt{10}};\,\,\, \frac{5}{2\sqrt{5}};\,\,\, \frac{1}{3\sqrt{20}};\,\,\, \frac{2\sqrt{2}+2}{5\sqrt{2}};\,\,\, \frac{y+b\cdot \sqrt{y}}{b\cdot \sqrt{y}}.\)

Hướng dẫn giải:

\(\frac{5}{\sqrt{10}}=\frac{5\sqrt{10}}{10}=\frac{\sqrt{10}}{2}\)

\(\frac{5}{2\sqrt{5}}=\frac{5\sqrt{5}}{2.5}=\frac{\sqrt{5}}{2}\)

\(\frac{1}{3\sqrt{20}}=\frac{\sqrt{20}}{3.20}=\frac{2\sqrt{5}}{60}=\frac{\sqrt{5}}{30}\)

\(\frac{\sqrt{2}(2\sqrt{2}+2)}{5.2}=\frac{4+2\sqrt{2}}{10}=\frac{2+\sqrt{2}}{5}\)

\(\frac{y+b\sqrt{y}}{b\sqrt{y}}=\frac{\sqrt{y}+b}{b}\)

Trường Cao đẳng nghề Thừa Thiên Huế

cdnthuathienhue.edu.vn

Trường Cao Đẳng nghề Thừa Thiên Huế được thành lập theo Quyết định số 209/QĐ-LĐTBXH ngày 22/02/2012 của Bộ trưởng Bộ Lao Động Thương Binh Xã Hội. Là một trong những trường đào tạo nghề trọng điểm của Tỉnh Thừa Thiên Huế và là một trong 36 trường dạy nghề được đầu tư tập trung bằng nguồn vốn dự án "Tăng cường năng lực đào tạo nghề" giai đoạn 2001-2005 của Bộ Lao động - Thương binh và Xã hội.

Có thể bạn cần

Back to top button