Giải bài tập

Giải bài 25, 26, 27 trang 16 SGK Toán 9 tập 1

Giải bài tập trang 16 bài 3 liên hệ giữa phép nhân và phép khai phương SGK Toán 9 tập 1. Câu 25: Tìm x biết…

Bài 25 trang 16 sgk Toán 9 – tập 1

Bài 25. Tìm x biết:

a) \( \sqrt{16x}\) = 8;                     b) \( \sqrt{4x} = \sqrt{5}\);

c) \( \sqrt{9(x – 1)}\) = 21;             d) \( \sqrt{4(1 – x)^{2}}\) – 6 = 0.

Hướng dẫn giải:

a)

Điều kiện: \(x\geq 0\)

Khi đó:

\(\sqrt{16x}= 8\Leftrightarrow 16x=64\Leftrightarrow x=\frac{64}{16}=4\)

b)

Điều kiện: \(x\geq 0\)

Khi đó:

\(\sqrt{4x} = \sqrt{5}\Leftrightarrow 4x=5\Leftrightarrow x=\frac{5}{4}\)

c)

Điều kiện: \(x\geq 1\)

Khi đó:

\(\sqrt{9(x – 1)}= 21\)

\(\Leftrightarrow 9(x-1) = 441\)

\(\Leftrightarrow x-1=\frac{441}{9}=49\)

\(\Leftrightarrow x=50\)

d) Điều kiện: Vì \( (1 – x)^{2}\) ≥ 0 với mọi giá trị của x nên \( \sqrt{4(1 – x)^{2}}\) có nghĩa với mọi giá trị của x.

         \( \sqrt{4(1 – x)^{2}}\) – 6 = 0 \( \Leftrightarrow\) √4.\( \sqrt{(1 – x)^{2}}\) – 6 = 0

         \( \Leftrightarrow\) 2.│1 – x│= 6 \( \Leftrightarrow\) │1 – x│= 3.

Ta có 1 – x ≥ 0 khi x ≤ 1. Do đó:

         khi x ≤ 1 thì │1 – x│ = 1 – x.

         khi x > 1 thì │1 – x│ = x -1.

Để giải phương trình │1 – x│= 3, ta phải xét hai trường hợp:

– Khi x ≤  1, ta có: 1 – x = 3 \( \Leftrightarrow\) x = -2.

Vì -2

– Khi x > 1, ta có: x – 1 = 3 \( \Leftrightarrow\) x = 4.

Vì 4 > 1 nên x = 4 là một nghiệm của phương trình.

Vậy phương trình có hai nghiệm là x = -2 và x = 4.

 

Bài 26 trang 16 sgk Toán 9 – tập 1

Bài 26. a) So sánh \( \sqrt{25 + 9}\) và \( \sqrt{25} + \sqrt{9}\);

          b) Với a > 0 và b > 0, chứng minh \( \sqrt{a + b}\) 

Hướng dẫn giải:

a) Ta có: \(\sqrt{25 + 9}=\sqrt{34}\)

\(\sqrt{25} + \sqrt{9}=5+3=8=\sqrt{64}\)

Vậy: \(\sqrt{25 + 9}

b) Ta có: \( (\sqrt{a + b})^{2} = a + b\)  và

             \( (\sqrt{a + b})^{2}\) = \( \sqrt{a^{2}}+ 2\sqrt a .\sqrt b +\sqrt{b^{2}}\)

                               \( = a + b + 2\sqrt a .\sqrt b \)

Vì a > 0, b > 0 nên \(\sqrt a .\sqrt b > 0.\)

Do đó \( \sqrt{a + b}

 


Bài 27 trang 16 sgk Toán 9 – tập 1

Bài 27. So sánh

a) 4 và \(2\sqrt{3}\);           b) \(-\sqrt{5}\) và -2

Hướng dẫn giải:

a)

Ta có: \(4=\sqrt{16}\)

\(2\sqrt{3}=\sqrt{2^2.3}=\sqrt{12}\)

Nên: \(16>12\Leftrightarrow \sqrt{16}>\sqrt{12}\)

Vậy: \(4>2\sqrt{3}\)

b)

Số càng lớn khi biểu thức trong căn càng lớn. Nhưng đối với số âm: số âm càng bé khi giá trị tuyệt đối càng lớn.

Ta có:

\(2=\sqrt{4}\)

\(\Rightarrow \sqrt{5}>\sqrt{4}\Rightarrow -\sqrt{5}

Vậy \(-\sqrt{}5

Trường Cao đẳng nghề Thừa Thiên Huế

cdnthuathienhue.edu.vn

Trường Cao Đẳng nghề Thừa Thiên Huế được thành lập theo Quyết định số 209/QĐ-LĐTBXH ngày 22/02/2012 của Bộ trưởng Bộ Lao Động Thương Binh Xã Hội. Là một trong những trường đào tạo nghề trọng điểm của Tỉnh Thừa Thiên Huế và là một trong 36 trường dạy nghề được đầu tư tập trung bằng nguồn vốn dự án "Tăng cường năng lực đào tạo nghề" giai đoạn 2001-2005 của Bộ Lao động - Thương binh và Xã hội.

Có thể bạn cần

Back to top button